TÌM X:
\(x-\left(\frac{50x}{100}+\frac{25x}{100}\right)=11\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c,\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow(x+1)(x+1)=2.8\)
\(\Rightarrow(x+1)^2=16\)
\(\Rightarrow(x+1)^2=4^2\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=4-1\)
\(\Rightarrow x=3\)
\(a,x-(\frac{50x}{100}+\frac{25x}{200})=11\frac{1}{4}\)
\(\Rightarrow x-\frac{50x+25x}{100}=\frac{45}{4}\)
\(\Rightarrow\frac{100x}{100}-\frac{75x}{100}=\frac{45}{4}\)
\(\Rightarrow\frac{100x-75x}{100}=\frac{1125}{100}\)
\(\Rightarrow25x=1125\)
\(\Rightarrow x=45\)
\(a)\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x(x+3)}=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left[(\frac{1}{5}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3})\right]=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left[\frac{1}{5}-\frac{1}{x+3}\right]=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{5}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
\(b)x-(\frac{50x}{100}-\frac{25x}{200})=\frac{45}{4}\)
\(\Rightarrow x-(\frac{100x}{200}-\frac{25x}{200})=\frac{45}{4}\)
\(\Rightarrow x-\frac{5x}{8}=\frac{45}{4}\)
\(\Rightarrow\frac{3x}{8}=\frac{45}{4}\)
\(\Rightarrow3x=\frac{45}{4}\cdot8\)
\(\Rightarrow3x=90\Rightarrow x=30\)
\(c)1+2+3+4+...+x=820\)
Ta có : \(1+2+3+4+...+x=\frac{(1+x)\cdot x}{2}\)
Do đó : \(\frac{(1+x)\cdot x}{2}=820\)
\(\Rightarrow(1+x)\cdot x=820\cdot2\)
\(\Rightarrow(1+x)\cdot x=1640\)
\(\Rightarrow(1+x)\cdot x=40\cdot41\)
Vì x và x + 1 là hai số tự nhiên liên tiếp nên => x = 40
Chúc bạn học tốt :3
\(x-\left(\dfrac{50x}{100}+\dfrac{25x}{100}\right)=11\dfrac{1}{4}\)
\(x-\dfrac{3x}{4}=\dfrac{45}{4}\)
\(\dfrac{x}{4}=\dfrac{45}{4}\Rightarrow x=45\)
Vê trái:
\(=\frac{2}{\left(x-1\right)\left(x+1\right)}+\frac{4}{\left(x-2\right)\left(x+2\right)}+...+\frac{20}{\left(x-10\right)\left(x+10\right)}\)
\(=\frac{\left(x+1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}\)
\(=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x-2}-\frac{1}{x+2}+...+\frac{1}{x-10}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\)
Vế phải:
\(=\frac{\left(x+1\right)-\left(x-10\right)}{\left(x-10\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-9\right)}{\left(x-9\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-1\right)}{\left(x-1\right)\left(x+10\right)}\)
\(=\frac{1}{x-10}-\frac{1}{x+1}+\frac{1}{x-9}-\frac{1}{x+2}+...+\frac{1}{x-1}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\) = vế phải
=> đpcm
\(x-\left(\frac{50x}{100}+\frac{25x}{100}\right)=\frac{45}{4}\)
\(x-\left(\frac{50x+25x}{100}\right)=\frac{45}{4}\)
\(x-\frac{75x}{100}=\frac{45}{4}\)
\(x-x\times\frac{3}{4}=\frac{45}{4}\)
\(x\times\left(1-\frac{3}{4}\right)=\frac{45}{4}\)
\(x\times\frac{1}{4}=\frac{45}{4}\)
\(x=\frac{45}{4}\div\frac{1}{4}\)
\(x=45\)
\(x-\left(\frac{50x}{100}+\frac{25x}{200}\right)=\frac{45}{4}\)
\(x-\left(\frac{100x}{200}+\frac{25x}{200}\right)=\frac{45}{4}\)
\(x-\left(\frac{100x+25x}{200}\right)=\frac{45}{4}\)
\(x-\frac{125x}{200}=\frac{45}{4}\)
\(x-x\frac{5}{8}=\frac{45}{4}\)
\(x\left(1-\frac{5}{8}\right)=\frac{45}{4}\)
\(x.\frac{3}{8}=\frac{45}{4}\)
\(x\)=\(\frac{45}{4}:\frac{3}{8}\)
\(x\)=\(30\)