K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

góc GDC=góc GBC=90  => tứ giác nội típ

I là trung điểm của GC

27 tháng 3 2016

BFC vuông cân niềm tin ak

5 tháng 2 2023

△ABC nội tiếp đường tròn đường kính BC.

\(\Rightarrow\)△ABC vuông tại A.

- Ta có: \(\widehat{ABC}+\widehat{ABG}=90^0\) (\(BG\perp BC\) tại B).

\(\widehat{EBG}+\widehat{ABG}=90^0\) (\(AB\perp EB\) tại B).

\(\Rightarrow\widehat{ABC}=\widehat{EBG}\)

△ABC và △EBG có: \(\widehat{ABC}=\widehat{EBG}\) (cmt)

\(AB=EB\) (ABED là hình vuông).

\(\widehat{BAC}=\widehat{BEG}=90^0\)

\(\Rightarrow\)△ABC=△EBG (g-c-g).

\(\Rightarrow\widehat{ACB}=\widehat{EGB}\) (1).

AFBC là tứ giác nội tiếp có \(\widehat{EFB}\) là góc ngoài đỉnh F.

\(\Rightarrow\widehat{ACB}=\widehat{EFB}\) (2).

(1), (2) \(\Rightarrow\widehat{EGB}=\widehat{EFB}\) nên GEBF nội tiếp.

a: Vì A,B,D,C cùng nằm trên (O)

nên ABDC nội tiếp

b: Xét (D) có

MB,MF là tiếp tuyến

=>MB=MF

Xét (D) có

NF,NC là tiếp tuyến

=>NF=NC

=>MB+CN=MF+NF=MN

a: A,B,D,C cùng thuộc (O)

=>ABDC nọi tiép

b: AB vuông góc BD

=>AB là tiếp tuyến của (D)

AC vuông góc CD

=>AC là tiếp tuyến của (D) 

MB,MF là tiêp tuyến của (D) nên MB=MF

NF,NC là tiếp tuyến của (D) nên NF=NC

=>BM+NC=MF+NF=MN

a: ΔOAC cântại O

mà OI là trung tuyến

nên OI vuông góc AC

góc OIE+góc OBE=180 độ

=>OIEB nội tiếp

b: góc ACB=1/2*180=90 độ

=>CB vuông góc AE

=>EB^2=EC*EA

 

1: góc AEB=1/2*180=90 độ

góc BEF+góc BIF=180 độ

=>BEFI nội tiếp

2: Xét ΔACF và ΔAEC có

góc ACF=góc AEC

góc CAF chung

=>ΔACF đồng dạng với ΔAEC

=>AC/AE=AF/AC

=>AC^2=AE*AF

a: góc CDH=1/2*sđ cung CH=90 độ

góc CEH=1/2*sđ cung CH=90 độ

góc ACB=1/2*180=90 độ

Vì góc CDH=góc CEH=góc DCE=90 độ

nên CDHE là hình chữ nhật

b: ΔCHA vuông tại H có HD là đường cao

nên CD*CA=CH^2

ΔCHB vuông tại H

mà HE là đường cao

nên CE*CB=CH^2=CD*CA

CDHE là hình chữ nhật

=>góc CDE=góc CHE=góc CBA

=>góc ADE+góc ABE=180 độ

=>ABED nội tiếp