K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc CDH=1/2*sđ cung CH=90 độ

góc CEH=1/2*sđ cung CH=90 độ

góc ACB=1/2*180=90 độ

Vì góc CDH=góc CEH=góc DCE=90 độ

nên CDHE là hình chữ nhật

b: ΔCHA vuông tại H có HD là đường cao

nên CD*CA=CH^2

ΔCHB vuông tại H

mà HE là đường cao

nên CE*CB=CH^2=CD*CA

CDHE là hình chữ nhật

=>góc CDE=góc CHE=góc CBA

=>góc ADE+góc ABE=180 độ

=>ABED nội tiếp

8 tháng 5 2018

Xét đt (O) có: \(\widehat{ACB}=90^o\)(Góc nội tiếp chắn nửa đt) => \(\widehat{DCE}=90^o\)(1)

Xét đt (K) có: \(\widehat{CDH}=90^o\)(Góc nội tiếp chắn nửa đt) (2)

\(\widehat{CEH}=90^o\)(góc nội tiếp chắn nửa đt) (3)

Từ (1),(2) và (3) => Tứ giác CDHE là hình chữ nhật (Dhnb) => CH = DE (T/c 2 đường chéo = nhau của HCN) => Đpcm

a) Xét (O) có 

ΔCAB nội tiếp đường tròn(C,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔCAB vuông tại C(Định lí)

\(\widehat{ACB}=90^0\)

hay \(\widehat{KCB}=90^0\)

Xét tứ giác BHKC có

\(\widehat{BHK}\) và \(\widehat{KCB}\) là hai góc đối

\(\widehat{BHK}+\widehat{KCB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

5 tháng 11 2021

giups em voi a

 

Sửa đề: DO cắt AC tại E

a) Xét (O) có 

DA là tiếp tuyến có A là tiếp điểm(gt)

DC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: DA=DC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: DA=DC(Cmt)

nên D nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OC(=R)

nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra DO là đường trung trực của AC

\(\Leftrightarrow DO\perp AC\)

mà DO cắt AC tại E(gt)

nên \(DO\perp AC\) tại E

Xét tứ giác CEOH có 

\(\widehat{CEO}\) và \(\widehat{CHO}\) là hai góc đối

\(\widehat{CEO}+\widehat{CHO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: CEOH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)