K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AHMO có \(\widehat{HAO}+\widehat{HMO}=180^0\)

nên AHMO là tứ giác nội tiếp

Xét (O) có

HM là tiếp tuyến

HA là tiếp tuyến

Do đó: HM=HA và OH là tia phân giác của góc MOA(1)

Xét (O) có

KM là tiếp tuyến

KB là tiếp tuyến

Do đó: KM=KB và OK là tia phân giác của góc MOB(2)

Ta có: HM+MK=HK

nên HK=HA+KB

b: Từ (1) và (2) suy ra \(\widehat{HOK}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

a: Xét tứ giác HAOM có

\(\widehat{HAO}+\widehat{HMO}=90^0+90^0=180^0\)

=>HAOM là tứ giác nội tiếp

b: Xét (O) có

HA,HM là các tiếp tuyến

Do đó: HA=HM và OH là phân giác của góc MOA

Xét (O) có

KM,KB là các tiếp tuyến

Do đó: KM=KB và OK là phân giác của góc MOB

Ta có: HM+MK=HK(M nằm giữa H và K)

mà HM=HA và KM=KB

nên HA+KB=HK

c: Ta có: HA=HM

=>H nằm trên đường trung trực của AM(1)

Ta có: OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra HO là đường trung trực của AM

=>HO\(\perp\)AM

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó; ΔAMB vuông tại M

=>AM\(\perp\)MB

Ta có: HO\(\perp\)AM

AM\(\perp\)MB

Do đó: HO//MB

=>\(\widehat{AOH}=\widehat{ABM}\)

Xét ΔAHO vuông tại A và ΔMAB vuông tại M có

\(\widehat{AOH}=\widehat{MBA}\)

Do đó: ΔAHO đồng dạng với ΔMAB

=>\(\dfrac{HO}{AB}=\dfrac{AO}{MB}\)

=>\(HO\cdot MB=AO\cdot AB=2R^2\)

19 tháng 10

c ơi c làm dc chưa ạ? e cũng đang cần bài này ạ

 

26 tháng 11 2022

Làm cho mik ý b và c

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

góc DMO+góc DBO=180 độ

=>DMOB nội tiếp

b: Xét (O) có

CM,CA là tiếp tuyến

=>CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc DOC=1/2*180=90 độ

Xét ΔDOC vuông tại O có OM là đường cao

nên CM*MD=OM^2

=>AC*BD=R^2