xin chào các bạn, tôi là Trần Duy Anh, học sinh lớp 7B3, nay tôi sẽ đưa cho các bạn một bài toán sau:
Tim các giá trị của y để các biểu thức sau nhận giá trị dương
a) 2y2-4y b) 5 ( 3y+1):(4y-3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 5A = 5 + 5^2 +...+ 5^51
=> 5A - A = 4A = 5^51 - 1
=> A = \(\frac{5^{51}-1}{4}\)
Bài 1:
a: \(x^2+5x=x\left(x+5\right)\)
Để biểu thức này âm thì \(x\left(x+5\right)< 0\)
hay -5<x<0
b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)
\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)
1+2+3+4+5+...+99+100( có 100 số hạng)
=(1+100).100÷2
=101.50
=5050
Gau Xơ đã làm bài toán này như sau :
Gau Xơ nhận thấy rằng cặp 2 số đầu và cuối , cũng như từng cặp 2 số cách đều số đầu và số cuối đều có tổng bằng 101.
Có 50 cặp như thế, do đó kết quả là : 101.50 = 5050
Nếu tôi giả bài toán này thì theo tôi là có 3 cách làm ( kể cả cách Gau Xơ làm thế )
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Leftrightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(\Leftrightarrow3C-C=1-\frac{1}{3^{99}}\)
\(\Leftrightarrow2C=1-\frac{1}{3^{99}}\)
\(\Leftrightarrow C=\frac{1-\frac{1}{3^{99}}}{2}=\frac{1}{2}-\frac{1}{2-3^{99}}\)
Vậy \(C< \frac{1}{2}\)\(\left(DPCM\right)\)
\(a)x^2-2x+y^2+4y+6\\=(x^2-2x+1)+(y^2+4y+4)+1\\=(x^2-2\cdot x\cdot1+1^2)+(y^2+2\cdot y\cdot2+2^2)+1\\=(x-1)^2+(y+2)^2+1\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
hay giá trị của biểu thức trên luôn dương
\(b)x^2-2x+2\\=(x^2-2x+1)+1\\=(x^2-2\cdot x\cdot1+1^2)+1\\=(x-1)^2+1\)
Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+1\ge1>0\forall x\)
hay giá trị của biểu thức trên luôn dương
tôi không biết