Cho \(x+y+z=0.\)
Chứng minh rằng :
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+3xyz=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(x+y+z=0.\)
Chứng minh rằng :
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+3xyz=0\)
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.
Cách này đòi hỏi sự kiên nhẫn và kinh nghiệm.
Cần chứng minh:
\({\dfrac {4 \left( xy+zx+yz \right) \left( x+y+z \right) ^{7}}{ 243}}- \left( {x}^{3}+{y}^{3}+{z}^{3} \right) \left( {x}^{3}{y}^{3}+{ x}^{3}{z}^{3}+{y}^{3}{z}^{3} \right) \geqslant 0.\quad(1) \)
Đặt
\(\text{M}=4\,{z}^{7}+ \left( 757\,x+757\,y \right) {z}^{6}+84\, \left( x+y \right) ^{2}{z}^{5}+140\, \left( x+y \right) ^{3}{z}^{4}\\\quad\quad+ \left( 1598 \,{x}^{4}+4205\,{x}^{3}y+4971\,{x}^{2}{y}^{2}+4205\,x{y}^{3}+1598\,{y} ^{4} \right) {z}^{3}\\\quad \quad+84\, \left( x+y \right) ^{5}{z}^{2}+28\, \left( x +y \right) ^{6}z\geqslant 0 \)
Ta có:
\((1)\Leftrightarrow \dfrac{1}{243}xy\cdot M+{\dfrac { \left( x+y \right) \left( {x}^{2}+11\,xy+{y}^{2} \right) \left( 2\,x-y \right) ^{2} \left( x-2\,y \right) ^{2}xy}{243}}\\\quad\quad+{ \dfrac { \left( x+y \right) z \left( x+y+z \right) \left( {x}^{2}+2\,x y+11\,zx+{y}^{2}+11\,yz+{z}^{2} \right) \left( 2\,y-z+2\,x \right) ^{ 2} \left( y-2\,z+x \right) ^{2}}{243}}\geqslant 0. \)
Đẳng thức xảy ra khi $...$
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
Ta có : \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+3xyz\)
\(=\left[xy\left(x+y\right)+xyz\right]+\left[yz\left(y+z\right)+xyz\right]+\left[xz\left(x+z\right)+xyz\right]\)
\(=xy\left(x+y+z\right)+yz\left(y+z+x\right)+xz\left(x+z+y\right)\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)=0\) (Vì x + y + z = 0 )
\(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
Từ đó ta có:\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+3xyz\)
\(\Rightarrow xy\left(-z\right)+yz.\left(-x\right)+xz.\left(-y\right)+3xyz\)
\(\Rightarrow-3xyz+3xyz=0\)
\(\Rightarrowđpcm\)