K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

CMR: \(5^{100}-5^{99}+5^{98}\)chia hết cho 7

Ta có: \(5^{100}-5^{99}+5^{98}\)

\(=5^{98}.5^2-5^{98}.5+5^{98}\)

\(=5^{98}.\left(5^2-5-1\right)\)

\(=5^{98}.21\)

\(=5^{98}.3.7\)

=> \(5^{100}-5^{99}+5^{98}\)chia hết cho 7 

11 tháng 7 2016

\(5^{100}-5^{99}+5^{98}\)

\(=5^{98}.\left(5^2-5+1\right)\)

\(=5^{98}.21\)

\(=5^{98}.3.7\)chia hết cho 7

8 tháng 7 2016

a. 5100 - 599 + 598

= 598.(52 - 5 + 1)

= 598.(25 - 5 + 1)

= 598.21

= 598.3.7 chia hết cho 7

Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).

b. 729 + 728 - 727

= 727.(72 + 7 - 1)

= 727.(49 + 7 - 1)

= 727.55

= 727.5.11 chia hết cho 11

Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).

14 tháng 7 2016

a. 5100 - 599 + 598

= 598.(52 - 5 + 1)

= 598.(25 - 5 + 1)

= 598.21

= 598.3.7 chia hết cho 7

Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).

b. 729 + 728 - 727

= 727.(72 + 7 - 1)

= 727.(49 + 7 - 1)

= 727.55

= 727.5.11 chia hết cho 11

Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).

10 tháng 10 2016

a/ \(5^{98}\left(1+5+5^2\right)=5^{98}.31\) chia hết cho 31

b/ \(7^{150}\left(7^2-1+7\right)=7^{150}.55\) chia hết cho 55

10 tháng 10 2016

Thanks bạn nhiều

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Đề lỗi công thức khá khó đọc. Bạn xem lại.

4 tháng 1 2017

Ta có : S = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 599 + 5100 )

= 5 ( 1 + 5 ) + 53 ( 1 + 5 ) + ..... + 599 ( 1 + 5 )

= 5.6 + 53.6 + .... + 599.6

= 6 ( 5 + 53 + ... + 599 )

Vì 6 chia hết cho 6 nên 6 ( 5 + 53 + ... + 599 ) chia hết cho 6 

Hay S chia hết cho 6 ( đpcm )

4 tháng 1 2017

Ta có A=5+52+53+...+599+5100=(5+52)+(53+54)+...+(599+5100)

A=5.(1+5)+53.(1+5)+599.(1+5)

A=5.6+53.6+...+599.6

A=6.(5+53+...+599) sẽ chia hết cho 6

mik nha bài nay mik làm HSG lớp 6 quen rùi!!!!!

16 tháng 3 2024

a;

A = 109 + 108 + 107 

A = 107.(102 + 10 + 1)

A = 106.2.5.(100 + 10 + 1)

A = 106.2.5.111

A = 106.2.555 ⋮ 555 (đpcm)

16 tháng 3 2024

b;

B = 817 - 279 - 919

B = 914 - 39.99 - 919

B = 914 - 3.38.99 - 919

B = 914 - 3.94.99 - 919

B = 914 - 3.913 - 919

B = 913.(9 - 3 - 96)

B = 913.(9 - 3 - \(\overline{..1}\))

B = 913.(6 - \(\overline{..1}\))

B = 913.\(\overline{..5}\)

B ⋮ 9; B ⋮ 5

\(\in\) BC(9; 5)  = 9.5 = 45

B ⋮ 45 (đpcm)

 

17 tháng 1 2019

em mới học lớp 5 thôi nên em ko chả lời được.

17 tháng 1 2019

\(A=1+5+5^2+..........+5^{97}+5^{98}+5^{99}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...........+\left(5^{97}+5^{98}+5^{99}\right)\)

\(=31+5^3\left(1+5+5^2\right)+.........+5^{57}\left(1+5+^2\right)\)

\(=32+5^3.31+..........+5^{97}.31⋮31\left(ĐPCM\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2024

Lời giải:

$A=1+5+5^2+5^3+...+5^{98}+5^{99}$

$=1+(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^{97}+5^{98}+5^{99})$

$=1+5(1+5+5^2)+5^4(1+5+5^2)+...+5^{97}(1+5+5^2)$

$=1+(1+5+5^2)(5+5^4+...+5^{97})$

$=1+31(5+5^4+....+5^{97})$

$\Rightarrow A$ chia $31$ dư $1$

29 tháng 10 2014

5^2+5^3+5^4+...+5^98+5^99=(5^2+5^3)+(5^4+5^5)+...+(5^98+5^99)=5^2.(1+5)+5^4.(1+5)+...+5^98.(1+5)=5^2.6+5^4.6+...+5^98.6=6.(5^2+5^4+...+5^98)=5^2+5^4+...+5^98 chia hết cho 6