cho x+y=2 ;x,y thuộc R .tìm Min của A=x3+y3+2xy
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
YA
1
10 tháng 7 2023
f: x+y+z=3
=>x^2+y^2+z^2+2(xy+xz+yz)=9
=>2(xy+yz+xz)=6
=>xy+yz+xz=3
mà x+y+z=3
nên x=y=z=1
e: x^2+y^2+2=2(x+y)
=>(x+y)^2-2xy+2-2(x+y)=0
=>(x+y)(x+y-2)-2(xy-1)=0
=>x=y=1
17 tháng 6 2016
a) A = (x+y) + |x+y|
- Nếu x+y >= 0 thì A = x+y+x+y = 2(x+y) chia hết cho 2
- Nếu x+y <0 thì A = 0 cũng chia hết cho 2.
b) B = x - y - |x-y|
- Nếu x-y >= 0 thì B = x-y-x+y = 0 chia hết cho 2
- Nếu x-y < 0 thì B = x - y + x - y = 2*(x-y) chia hết cho 2.
c) C = x - y - z + ||x+y| + z|
- Nếu |x+y| + z >= 0 thì C = x - y - z + |x+y| + z = x+y + |x+y| - 2y = A - 2y chia hết cho 2. (A là biểu thức A phần a)
- Nếu |x+y| + z < 0 thì C = x - y - z - |x+y| - z = x+y + |x+y| - 2y - 2z - 2|x+y| = A - 2y -2z - 2|x+y| chia hết cho 2. (A là biểu thức A phần a).
30 tháng 7 2018
1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Do \(x+y=1\)nên \(A=1-2xy\)
Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).
\(A=x^3+y^3=2xy\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(=2\left(x^2+y^2-xy\right)\)
\(\Rightarrow2\left(x^2+y^2-xy\right)=2xy\)
\(\Rightarrow x^2+y^2-xy=2xy\)
\(\Rightarrow x^2+y^2-2xy=xy\)
\(\Rightarrow\left(x-y\right)^2=xy\)
\(\left(x-y\right)^2\ge0\Rightarrow xy\ge0\)
Do đó GTNN của A là 0.
A = x3 + y3
= (x + y).(x2 - xy + y2)
= 2.(x2 - xy + y2)
Mà A = 2xy
=> 2.(x2 - xy + y2) = 2xy
=> x2 - xy + y2 = xy
=> x2 - xy - xy + y2 = 0
=> x2 - 2xy + y2 = 0
=> (x - y)2 = 0
Mà (x - y)2 \(\ge\)0
=> GTNN của A là 0 <=> x - y = 0 <=> x = y