K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2022

- Với \(x=1\) ko thỏa mãn

- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn

- Với \(x\ge3\)

\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)

\(\Rightarrow2\left(x+y\right)⋮xy+2\)

\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)

\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)

\(\Rightarrow y=\left\{1;2;3;4\right\}\)

Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu

Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)

\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m

Tương tự...

14 tháng 3 2022

Em cả mơn thầy 

Thầy mãi đỉnh

9 tháng 10 2018

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

9 tháng 10 2018

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Lời giải:

Với $x,y$ dương thì $\frac{2x+2y}{xy+2}$ nếu nhận giá trị nguyên thì là nguyên dương 

$\Rightarrow 2x+2y\geq xy+2$

$\Leftrightarrow (x-2)(y-2)-2\leq 0(*)$

Nếu $x,y> 4$ thì $(*)$ không thể xảy ra. Do đó tồn tại ít nhất 1 số trong 2 số $\leq 4$

Giả sử $y=\min (x,y)$.

Nếu $y=1$ thì $\frac{2x+2y}{xy+2}=\frac{2x+2}{x+2}=2-\frac{2}{x+2}$ nguyên khi $x+2$ là ước của $2$. Mà $x+2\geq 3$ với mọi $x$ nguyên dương nên TH này loại

Nếu $y=2$ thì $\frac{2x+2y}{xy+2}=\frac{2x+4}{2x+2}=\frac{x+2}{x+1}=1+\frac{1}{x+1}$ nguyên khi $x+1$ là ước của $1$. Mà $x+1\geq 2$ nên TH này cũng loại nốt.

Nếu $y=3$ thì $0\geq (x-2)(y-2)-2=x-2-2=x-4$

$\Rightarrow 4\geq x$. Vì $x\geq y$ nên $x=3$ hoặc $x=4$. Thay vô phân thức ban đầu ta có $(x,y)=(4,3)$ thỏa mãn

Nếu $y=4$ thì $0\geq (x-2)(y-2)-2=2(x-2)-2$

$\Rightarrow x\leq 3$. Mà $x\geq y$ nên loại.

Vậy $(x,y)=(4,3)$ và hoán vị $(3,4)$

18 tháng 8 2023

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài

17 tháng 9 2023

hình như dấu "=" xảy ra khi x^2 = 1/x^2 với x^2 = y^2/4 mà bạn nhỉ