1 . Tinh : a , \(\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{14}\right).....\left(1-\frac{1}{5050}\right)\)b,\(\frac{^{2^{19}}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}\)c,\(\frac{18.\frac{19}{2}.\frac{20}{3}.\frac{21}{4}.....\frac{36}{19}}{20.\frac{21}{2}.\frac{22}{3}.....\frac{36}{17}}\)giup mjk nha mjk tjk cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\\ = \left( {\frac{3}{4}:\frac{3}{2}} \right) - \left( {\frac{5}{6}.3} \right)\\ = \left( {\frac{3}{4}.\frac{2}{3}} \right) - \frac{5}{2}\\ = \frac{1}{2} - \frac{5}{2}\\ = \frac{-4}{2}\\= - 2.\end{array}\)
b)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{5}} \right).10 - \frac{5}{7}.\left( {\frac{{10}}{{15}} - \frac{3}{{15}}} \right)\\ = - 2 - \frac{5}{7}.\frac{7}{{15}}\\ = - 2 - \frac{1}{3}\\ = \frac{{ - 6}}{3} - \frac{1}{3}\\ = \frac{{ - 7}}{3}\end{array}\)
c)
\(\begin{array}{l}\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left[ {\left( {\frac{{ - 4}}{6}} \right) + \frac{3}{6}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left( {\frac{{ - 1}}{6}} \right)^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.\frac{1}{{36}}\\ = \left( { - \frac{2}{5}} \right) + \frac{1}{{15}}\\ = \left( { - \frac{6}{{15}}} \right) + \frac{1}{{15}}\\ = \frac{{ - 5}}{{15}}\\ = \frac{{ - 1}}{3}\end{array}\)
d)
\(\begin{array}{l}\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{1}{{25}} - \frac{3}{5}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 2}}{6}} \right) + \frac{3}{6}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{{ 1}}{{25}}-\frac{15}{25}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\left[ {{{\left( {\frac{{ - 14}}{{25}}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\frac{{196}}{{{{25}^2}}}.\frac{{25.5}}{{49}}.\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left( {\frac{{4.49.25.5.5}}{{{{25}^2}.49.6}}} \right) - \frac{1}{6}\\ = \frac{4}{6} - \frac{1}{6}\\ = \frac{3}{6}\\ = \frac{1}{2}\end{array}\)
\(a,\left(\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|\right):10=\left(1-\frac{1}{2}\right)....\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\Leftrightarrow\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.|x-2|=1\Leftrightarrow|x-2|.\frac{2}{3}=1\Leftrightarrow|x-2|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
\(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\)
\(\Leftrightarrow\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.\left|x-2\right|=1\)
\(\Leftrightarrow\left|x-2\right|.\frac{2}{3}=1\Leftrightarrow\left|x-2\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
(1-1/3)x(1-1/5)x(1-1/7)x(1-1/9)x(1-1/2)x(1-1/4)x(1-1/6)x(1-1/8)x(1-1/10)
=2/3x4/5x6/7x8/9x1/2x3/4x5/6x7/8x9/10
=2x4x6x8x1x3x5x7x9 /3x5x7x9x2x4x6x8x10
=1/10