1) Viết 11 số hữu tỉ thành 1 vòng tròn theo chiều kim đồng hồ sao cho tích của 2 số bất kì cạnh nhau bằng 9. Tính tổng của 11 số đó?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 11 số hữu tỉ đó lần lượt là \(a_1,a_2,a_3...a_{11}\)
\(\Rightarrow a_1\cdot a_2=9\)và \(a_2\cdot a_3=9\)(theo giả thiết) \(\Rightarrow a_1=a_3\)
Tương tự \(\Rightarrow a_1=a_3=a_5=a_7=a_9=a_{11}=m\) và \(a_2=a_4=a_6=a_8=a_{10}=n\)
=> trên vòng tròn chỉ có hai số m và n xen kẽ thỏa mãn m, n là số hữu tỉ và \(m\cdot n=9\)
=> tổng 11 số đó là \(6\cdot m+5\cdot n\)với mọi m, n thỏa mãn m, n là số hữu tỉ và \(m\cdot n=9\)
cái này ở trong sách tài liệu chuyên toán lơp 7 trang 26 đó bạn
Bài 2 dễ nên lm trc nha
Xét dãy số: 1; 11; 111; 1111; ....; 111....1(1990 số 1)
Dãy trên gồm có 1990 số; ta đã biết 1 số tự nhiên chia cho 1989 chỉ có thể có 1989 loại số dư là dư 0; 1; 2; ...; 1988. Có 1990 số mà chỉ có 1989 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư khi chia cho 1989
Hiệu 2 số này chia hết cho 1989 và gồm toàn chữ số 0 và 1
=> tồn tại 1 bội của 1989 gồm toàn chữ số 0 và 1 ( đpcm)
Bài 1:
Vì tích 3 số bất kì cạnh nhau là -1 nên trong 3 số đó hoặc là có 1 số -1 và 2 số 1 hoặc là cả 3 số đều là -1
+ Nếu trong 3 số đó có 1 số -1 và 2 số 1 thì ta đặt số -1 ở đầu tiên và 2 số 1 ở đằng sau, cứ như vậy sẽ thỏa mãn đề bài
Số nhóm chia được là: 60 : 3 = 20 ( nhóm)
Tổng mỗi nhóm là 1 nên tổng 20 nhóm hay 60 số là: 20
+ Nếu cả 3 số đều là -1 thì ta đặt 3 số theo thứ tự bất kì đều thỏa mãn đề bài
Có 20 nhóm, tổng mỗi nhóm là -3 nên tổng 20 nhóm hay 60 số là: -3 × 20 = -60