Cho tam giác ABC cân tại A, Trên các cạnh bên AB,AC lấy các điểm M,N sao cho BM=CN.
a) Tứ giác BMNC là hình gì vì sao?
b) Tính các góc của tứ giác BMNC biết rằng góc A= 40 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\left(BM=CN;AB=AC\right)\)
nên MN//BC(Định lí Ta lét đảo)
Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang
Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân
b) \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)
\(\Leftrightarrow\widehat{BMN}=\widehat{MNC}=180^0-70^0=110^0\)
Là hình thang vì mn // bc
tg abc cân tại a => b1=c1 =[180-40]/2=70
vì bmnc là ht => b1=m=70
c1=n=70
b2 và c2 = nhau => b2=c2 =180-70=110
vậy b2=110 c2=110 n=70 m=70
a)Có: AB=AM+MB
AC=AN+NC
Mà: AB=AC(gt) ; BM=CN(gt)
=>AM=AN
=> ΔAMN cân tại A
=>\(\widehat{AMN}=\frac{180-\widehat{A}}{2}\) (1)
Xét ΔABC cân tại A(gt)
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra:
^AMN=^ABC.MÀ hai góc này ở vị trí soletrong
=>MN//BC
Lại có: ^B=^C(gt)
=>BMNC là hình thang cân
b) Có: \(\widehat{MBC}=\widehat{NCB}=\frac{180-\widehat{A}}{2}=\frac{180-40}{2}=\frac{140}{2}=70\) (vì BMNC là ht)
Có: ^MBC+^BMN=180
=>^BMN=180-^MBC=180-70=110
=>^BMN=^MNC=110
a) ta có AB/AM = AC/AN (AB = AC và AM = AN theo giả thiết)
nên theo định lý đảo của định lý talet ta có MN // với BC
vậy BMNC là hình thang cân
b) xét tam giác ABC có góc A = 400. tam giác cân tại A nên ta có
góc A = góc B = (180-40):2 = 700
xét hình thang cân BMNC có:
góc BMN = góc CNM (vì đây là hai góc cùng kề 1 đáy của hình thang cân) = (360 - góc BMN - góc CNM): 2 = (360-70-70): 2 = 1100