tính kết quả của phép tính sau 29\(\dfrac{1}{2}\)x\(\dfrac{2}{3}\)+39\(\dfrac{1}{3}\)x\(\dfrac{3}{4}\)+\(\dfrac{5}{6}\) (giải cụ thể cho em ạ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
29\(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\) + 39\(\dfrac{1}{3}\)\(\times\)\(\dfrac{3}{4}\) + \(\dfrac{5}{6}\)
= \(\dfrac{59}{2}\) \(\times\) \(\dfrac{2}{3}\) + \(\dfrac{118}{3}\) \(\times\) \(\dfrac{3}{4}\) + \(\dfrac{5}{6}\)
= \(\dfrac{59}{3}\) + \(\dfrac{59}{2}\) + \(\dfrac{5}{6}\)
= \(\dfrac{295}{6}\) + \(\dfrac{5}{6}\)
= 50
Lời giải:
ĐKXĐ: $x\geq 5$
$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si
$\Leftrightarrow 2x^2-9x-2\leq 0$
$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$
Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$
Vậy pt vô nghiệm nên không có đáp án nào đúng.
\(\dfrac{1}{3}+\dfrac{5}{6}\cdot\left(x-\dfrac{11}{5}\right)=\dfrac{3}{4}\)
\(\dfrac{5}{6}\cdot\left(x-\dfrac{11}{5}\right)=\dfrac{3}{4}-\dfrac{1}{3}\)
\(\dfrac{5}{6}\cdot\left(x-\dfrac{11}{5}\right)=\dfrac{5}{12}\)
\(x-\dfrac{11}{5}=\dfrac{5}{12}\cdot\dfrac{6}{5}\)
\(x-\dfrac{11}{5}=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}+\dfrac{11}{5}\)
\(x=\dfrac{27}{10}\)
\(\dfrac{5}{6}\left(x-\dfrac{11}{5}\right)=\dfrac{3}{4}-\dfrac{1}{3}\)
\(\dfrac{5}{6}\left(x-\dfrac{11}{5}\right)=\dfrac{5}{12}\)
\(x-\dfrac{11}{5}=\dfrac{5}{12}:\dfrac{5}{6}\)
\(x-\dfrac{11}{5}=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}+\dfrac{11}{5}=\dfrac{27}{10}\)
\(\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{38\times39}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...\dfrac{1}{38}-\dfrac{1}{39}\)
\(=\dfrac{1}{3}-\dfrac{1}{39}\)
\(=\dfrac{13}{39}-\dfrac{1}{39}\)
\(=\dfrac{12}{39}=\dfrac{4}{13}\)
`1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(38xx39)`
`=1/3-1/4+1/4-1/5+1/5-1/6+...+1/38-1/39`
`=1/3-1/39`
`=4/13`
Mới thế đã hai năm trôi qua,câu trả lời từ mọi người vẫn KO XUẤT HIỆN.
Ko biết sau này câu trả lời có xuất hiện hay ko...
\(=\dfrac{1}{2x1x3x2}+\dfrac{1}{2x2x3x3}+\dfrac{1}{2x3x3x4}+...+\dfrac{1}{2x18x3x19}+\dfrac{1}{2x19x3x20}=\)
\(=\dfrac{1}{2x3}x\left(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{18x19}+\dfrac{1}{19x20}\right)=\)
\(=\dfrac{1}{6}x\left(\dfrac{2-1}{1x2}+\dfrac{3-2}{2x3}+\dfrac{4-3}{3x4}+...+\dfrac{20-19}{19x20}\right)=\)
\(=\dfrac{1}{6}x\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)=\)
\(=\dfrac{1}{6}x\left(1-\dfrac{1}{20}\right)=\dfrac{1}{6}x\dfrac{19}{20}=\dfrac{19}{120}\)
= 59/2 x 2/3+ 118/3 x 3/4 + 5/6
= 59/3+ 59/2+ 5/6
= 118/6+ 177/6+ 5/6
= 50
= 59/2 x 2/3+ 118/3 x 3/4 + 5/6
= 59/3+ 59/2+ 5/6
= 118/6+ 177/6+ 5/6
= 50