K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

hay \(\widehat{BAD}=\widehat{BDA}\)

b: Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)

\(\widehat{HAD}+\widehat{BDA}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)

nên \(\widehat{CAD}=\widehat{HAD}\)

hay AD là tia phân giác của góc HAC

11 tháng 5 2022

undefined

c, Ta có: Góc CAD= góc HAD 

hay góc KAD= góc HAD

Xét △ AHD và △AKD có:

AD chung

Góc AHD= góc AKD= 90 độ

Góc KAD= góc HAD

=> △AHD= △AKD (cạnh huyền- góc nhọn)

=> AH= AK (2 cạnh tương ứng)

a: BA=BD

=>ΔBAD cân tại B

=>góc BAD=góc BDA

b: góc HAD+góc BDA=90 độ

góc CAD+góc BAD=90 độ

mà góc BAD=góc BDA

nên góc HAD=góc CAD

=>AD là phân giác của góc HAC

c: Xét ΔADH vuông tại H và ΔADK vuông tại K có

AD chung

góc HAD=góc KAD

=>ΔADH=ΔADK

=>AH=AK

28 tháng 7 2023

bài giải nè ! ok 

a: BA=BD

=>ΔBAD cân tại B

=>góc BAD=góc BDA

b: góc HAD+góc BDA=90 độ

góc CAD+góc BAD=90 độ

mà góc BAD=góc BDA

nên góc HAD=góc CAD

=>AD là phân giác của góc HAC

c: Xét ΔADH vuông tại H và ΔADK vuông tại K có

AD chung

góc HAD=góc KAD

=>ΔADH=ΔADK

=>AH=AK

 

27 tháng 4 2016

giải dùm nka nhanh nhanh nka xin mấy pạn ă ^_^

27 tháng 4 2016

hình tự vẽ

a)Vì BD=BA (gt)

=>\(\Delta ABD\) cân ở B (DHNB)

=>góc BAD = góc ADB (t/c tam giác cân)

b)Ta có: góc BDA là góc ngoài của \(\Delta ACD\)

=>góc BDA = \(\)góc ACD + góc DAC (1)

   góc DAB=góc DAH + góc HAB (2)

Mà góc ABC + góc ACB = 900 (t/c tam giác vuông)

=>góc ACB = 900 - góc ABC

góc HAB + góc ABC = 900(t/c tam giác vuông)

=>góc HAB = 900 - góc ABC

=>góc ACB = góc HAB (3)

Từ (1);(2);(3);có góc BAD = góc BDA (cmt)

=>góc KAD = góc HAD ,mà AD nằm giữa AK và AH

=>AD là tpg của góc HAC (=góc KAH)

c)Xét \(\Delta AKD\) vuông tại K và \(\Delta AHD\) vuông tại H có:

AD:cạnh chung

góc KAD = góc HAD (cmt)

=>\(\Delta AKD=\Delta AHD\left(ch-gn\right)\)

=>AH=AK (cặp cạnh tương ứng)

d)Xét \(\Delta AHB\) vuông tại H có:

AH + HB > AB (BĐT tam giác)  (4)

Xét \(\Delta AHC\) vuông tại H có;

AH + HC > AC (BĐT tam giác)   (5)

Cộng (4) và (5),vế theo vế ta đc:

AH + HB + AH + HC > AB + AC

=>AB + AC < BC + 2AH   (đpcm)