so sánh
a, -214/317 và -21/38
b,-6/17 và -4/13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta so sánh \(\frac{214}{317}\)và \(\frac{21}{38}\)
Có \(\frac{21}{38}=\frac{189}{342}\)
Cũng có \(\frac{214}{317}+1=\frac{531}{317};\frac{189}{342}+1=\frac{531}{342}\)
=) \(\frac{531}{317}>\frac{531}{342}\)=) \(\frac{214}{317}+1>\frac{189}{342}+1\)=) \(\frac{214}{317}>\frac{189}{342}\)
=) \(\frac{214}{317}>\frac{21}{38}\)=) \(\frac{-214}{317}< \frac{-21}{38}\)
b) Có : \(\frac{-6}{17}=\frac{-12}{34};\frac{4}{-13}=\frac{-4}{13}=\frac{-12}{39}\)
=) \(\frac{-12}{34}< \frac{-12}{39}\)=) \(\frac{-6}{17}< \frac{4}{-13}\)
a)
\(\dfrac{-2}{3}\)>\(\dfrac{5}{-8}\)
b)
\(\dfrac{398}{-412}\)<\(\dfrac{-25}{-137}\)
c)
\(\dfrac{-14}{21}\)<\(\dfrac{60}{72}\)
a)
Có:
\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)
Vì \(\sqrt{117}>\sqrt{116}\) nên \(3\sqrt{13}>2\sqrt{29}\)
b)
Có:
\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)
\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)
Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\) nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)
c)
Có:
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)
\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)
Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)
d)
Có:
\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)
\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)
lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)
\(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)
a) \(\dfrac{3}{4}=\dfrac{3x4}{4x4}=\dfrac{12}{16},\dfrac{6}{7}=\dfrac{6x2}{7x2}=\dfrac{12}{14}\)
Do 16 > 14 => \(\dfrac{12}{16}< \dfrac{12}{14}hay\dfrac{3}{4}< \dfrac{6}{7}\)
Lời giải:
a.
$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$
$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.
$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$
$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$
$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$