K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

\(x^4-2x^3+4x^2-3x+2=0\\ \Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\\ \Leftrightarrow x^2\left(x^2-2x+1\right)+\left(3x^2-3x+2\right)=0\\ \Leftrightarrow x^2\left(x-1\right)^2+\left(3x^2-3x+2\right)=0\)

Vì \(x^2\left(x-1\right)^2\ge0\) và dễ dàng chứng minh được \(3x^2-3x+2>0\) nên pt vô nghiệm

28 tháng 5 2020

Giải:

Tập xác định của phương trình

              x\(\varepsilon\)   (\(\infty\);\(\infty\)

NV
9 tháng 5 2021

Đặt \(f\left(x\right)=2x^3-9x^2+12x-2-m\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

 \(\forall m\in\left(2;3\right)\) ta có:

\(f\left(0\right)=-2-m< 0\)

\(f\left(1\right)=3-m>0\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (1)

\(f\left(2\right)=2-m< 0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\)  luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (2)

\(f\left(3\right)=7-m>0\)

\(\Rightarrow f\left(2\right).f\left(3\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;3\right)\) (3)

Từ (1); (2); (3) \(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm dương pb

18 tháng 2 2021

\(pt:\left(-x^2+3x-2\right)m+3x-5=0\)

\(\Leftrightarrow-x^2m+3mx-2m+3x-5=0\)

\(\Leftrightarrow-x^2m+\left(3m+3\right)x-2m-5=0\)

pt co nghiem \(\Leftrightarrow\Delta=\left(3m+3\right)^2-4m\left(2m+5\right)\ge0\)

\(\Leftrightarrow9m^2+18m+9-8m^2-20m\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+8>0\left(ld\right)\)

Vay pt luon co nghiem voi moi m

 

10 tháng 1 2016

 

x4-3x2+6x+13=0

<=>x4-4x2+4+x2+6x+9=0

<=>(x2-2)2+(x-3)2=0

Ta thấy x2-2 khác x-3

=>PT vô nghiệm

10 tháng 1 2016

(x4-4x2+4)+(x2+6x+9)=0

(x2-4)2+(x+3)2=0

Vô nhiệm

 

5 tháng 2 2021

a) 2(x+1)=2x-1

<=> 2x+2=2x-1

<=> 2x+2-2x+1=0

<=>1=0

=>Pt vô nghiệm

23 tháng 8 2017

Thay m = - l vào vế trái phương trình :

- 1 2 + 5 - 1 + 4 x 2 = 0 x 2

Vế phải phương trình : - l + 4 = 3

Phương trình đã cho trở thành : 0 x 2  = 3 không có giá trị nào của x thỏa mãn phương trình. Vậy phương trình vô nghiệm.

31 tháng 3 2019

Thay m = - 2 vào vế trái phương trình :

- 2 2 + 5 - 2 + 4 x 2 = - 2 x 2

Vế phải phương trình: - 2 + 4 = 2

Phương trình đã cho trở thành: - 2 x 2 = 2 không có giả trị nào của x thỏa mãn vì vế trái âm mà vế phải dương. Vậy phương trình vô nghiệm.

Thay m = - 3 vào về trái phương trình:

- 3 2 + 5 - 3 + 4 x 2 = - 2 x 2

Vế phải phương trình : - 3 + 4 = l

Phương trình đã cho trở thành :  - 2 x 2 = 1  không có giả trị nào của x thỏa mãn vì vế trái là số âm mà vế phải là số dương. Vậy phương trình vô nghiệm.

5 tháng 2 2021

\(x^2+3x+4=0\)

\(\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=-\dfrac{7}{4}\left(VL\right)\)

Vậy ĐPCM

5 tháng 2 2021

\(x^2+3x+4=0\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}=0\)

\(\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\)

Ta có \(\left(x+\dfrac{3}{2}\right)^2\ge0,\forall x\)

\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0,\forall x\)

Vậy phương trình vô nghiệm.