1,Cho A= 331332 + 332333 + 333334
Hỏi A chia 3 dư bao nhiêu
A chia 5 dư bao nhiêu
2,Tìm a, b \(\in z\) sao cho
(a-b)(a+b)=2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)
a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19
Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\) ⇒ a + 55 \(\in\) BC(6; 19)
6 = 2.3; 19 = 19; BCNN(6; 19) = 2.3.19 = 114
⇒ BC(6; 19) = {0; 114; 228; 342;...;}
a \(\in\) { - 55; 59; 173;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 59
a + 55 \(\in\) B(114)
⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)
Bài 2:
Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21
Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)
5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105
⇒BC(5; 21) = {0; 105; 210;...;}
a+ 39 \(\in\) {0; 105; 210;...;}
a \(\in\) {-39; 66; 171;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 66
a + 39 ⋮ 105
⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)
Theo đề ta có a=5k+2
b=5q+3
13a+11b=13(5k+2)+11(5q+3)=65k+26+55q+33=(65k+55q)+59
Ta có 65k+55q chia hết cho 5 vì mỗi số hạng đều chia hết cho 5
59 chia 5 dư 4
Vậy 13a+11b chia 5 dư 4
Ta có: (a−b)+(a+b)=2a là một số chẵn
=> (a−b); (a+b)cùng chẵn hoặc cùng lẻ (do tổng của chúng là một số chẵn)
Mà tích của chúng = 2010 là một số chẵn nên 2 số cùng chẵn
⇒(a−b)(a+b) chia hết cho 4.
Mà 2010 không chia hết cho 4
=> Không tìm được các cặp số nguyên a, b thỏa mãn đề bài.