K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

 

 

10 tháng 3 2022

-2 mới đúng nha

mình tưởng mũ 2y

8 tháng 3 2022

Thay x=2, y=-1/2 vào B ta có:
\(B=x^3+2x^2y-4xy^2+2y-3\\=2^3+2.2^2.\left(-\dfrac{1}{2}\right)-4.2.\left(-\dfrac{1}{2}\right)^2+2.\left(-\dfrac{1}{2}\right)-3\\ =8-4-2-1-3\\ =-2\)

8 tháng 3 2022

Thay x = 2 ; y = -1/2 ta được 

\(B=8+2.4\left(-\dfrac{1}{2}\right)-\dfrac{4.2.1}{4}+2\left(-\dfrac{1}{2}\right)-3\)

\(=8-4-2-1-3=-2\)

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

a: \(M=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot x^3\cdot xy^2\cdot z^2=\dfrac{1}{2}x^4y^2z^2\)

Hệ số là 1/2

Biến là \(x^4;y^2;z^2\)

b: \(N=x^2y\left(4+5-3\right)=6x^2y=6\cdot2^2\cdot\left(-1\right)=-24\)

6 tháng 3 2022

Cảm ơn đã giải cho mình 

23 tháng 12 2020

B) Ta có: 2x-2y-x2+2xy-y2

⇔ 2(x-y)-(x2-2xy+y2)

⇔ 2(x-y)-(x-y)2

⇔ (x-y)(2-x+y)

Đúng thì tick nhé

26 tháng 12 2020

câu a đâu

 

a: C=A-B

\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)

\(=x^3+3x^2y+3xy^2+y^3\)

D=A+B

\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)

\(=9x^3-9x^2y+5xy^2+y^3\)

bậc của C là 3

bậc của D là 3

b: Thay x=0 và y=-2 vào D, ta được:

\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)

\(=0-0+0-8=-8\)

c: Thay x=-1 và y=-1 vào C, ta được:

\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)

=-8

3x^2+3y^2+4xy-2x+2y+2=0

=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0

=>x=1 và y=-1

M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1

19 tháng 10 2020

a)B=3x-2y3-6x2y2+xy

   B=(3x3-6x2y2)+(xy-2y3)

   B=3x2(x-2y2)+y(x-2y2)

    B=(x-2y2)(3x2+y)
tại x=\(\frac{2}{3}\)và y=\(\frac{1}{2}\)ta có B=(x-2y2)(3x2+y)=(\(\frac{2}{3}\)-2*\(\frac{1}{2}\)^2 )(3*\(\frac{2}{3}\)^2+\(\frac{1}{2}\))=\(\frac{1}{6}\)*\(\frac{11}{6}\)=\(\frac{11}{36}\)

b)C= 2x+xy2-x2y-2y

   C=(2x-2y)+(xy2-x2y)

   C=2(x-y)-xy(x-y)

   C=(2-xy)(x-y)

tại x=\(-\frac{1}{2}\)và y=\(-\frac{1}{3}\)ta có C=(2-xy)(x-y)=(2-\(-\frac{1}{2}\)*\(-\frac{1}{3}\))(\(-\frac{1}{2}\)+\(\frac{1}{3}\))=\(\frac{-11}{36}\)

2 tháng 11 2023

\(A=\left(x-2y\right)\left(x+2y\right)+\left(2y-x\right)^2+2023+4xy\)

\(A=x^2-\left(2y\right)^2+\left(4y^2-4xy+x^2\right)+2023+4xy\)

\(A=x^2-4y^2+4y^2-4xy+x^2+4xy\)

\(A=2x^2+2023\)

Vậy giá trị của biểu thức chỉ phụ thuộc vào x không phụ thuộc vào y 

\(B=\left(2x-3\right)\left(x-y\right)-\left(x-y\right)^2+\left(y-x\right)\left(x+y\right)\)

\(B=2x^2-2xy-3x+3y-\left(x^2-2xy+y^2\right)+y^2-x^2\)

\(B=2x^2-2xy-3x+3y-x^2+2xy-y^2+y^2-x^2\)

\(B=-3x+3y\)

Vậy giá trị của biểu thức vẫn phụ thuộc vào biến 

2 tháng 11 2023

A = (\(x\) - 2y)(\(x\) + 2y) + (2y - \(x\))2 + 2023 + 4\(xy\)

A = \(x^2\) - 4y2 + 4y2 - 4\(xy\) + \(x^2\) + 2023 + 4\(xy\)

A = (\(x^2\) + \(x^2\)) - (4y2 - 4y2) + 2023 - (4\(xy\) - 4\(xy\))

A = 2\(x^2\) - 0 + 2023 - 0

A = 2\(x^2\) + 2023

Việc chứng minh A có giá trị không phụ thuộc vào giá trị của biến là điều không thể xảy ra.

1 tháng 5 2023

Giá trị của biểu thức \(M=-2x^2.y^3-4xy^2\) tại x=1 và y=2 là:
\(M=-2x^2.y^3-4xy^2=-2.1^2.2^3-4.1.2^2=-32\)

⇒ Chọn B