tìm 2 số chẵn liên tiếp có tích chia hết cho24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong 3 số chẵn liên tiếp sẽ có :
1 số chi hết cho 2
1 số chia hết cho 4
và 1 số chia hết cho 6
mà số chia hết cho 24 thì phải chia hết cho 4 và 6
=> đcpm
~ ai có trên 11 đ ủng hộ nhes~
a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm
b . Gọi ba số chẵn liên tiếp là 2a,2a + 2 , 2a + 4 ( a \(\in\) N ) Xét tích :
2a.(2a + 2).(2a + 4) = 8a(a + 1)(a + 2)
Chứng minh rằng a(a + 1)(a + 2) chia hết cho 3 và chia hết cho 2.
c. Ta có 384 = 2\(^7.3\)
Tích 4 số chẵn liên tiếp sẽ có dạng : \(2^4.n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\)
Ta cần c/m tích \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\) chia hết cho \(2^3.3\) hay chia hết cho 8 và cho 3( vì 8,3 là số nguyên tố cùng nhau)
L-I-K-E nha ! Mình đã bỏ thời gian ra giải cho bạn rồi đấy
a. Gọi 2 số chẵn liên tiếp đó là 2a ; 2a + 2
=> 2a.(2a+2)chia hết cho 2 (1)
2a. (2a+2) = 2a.2a + 2a .2 = 4.a.a+4.a=4.(a.a+a)
=> 2a(2a+2) chia hết cho 4 (2)
từ (1) và (2) 2a.(2a+2) chia hết cho 8
Mấy bài kia tương tự
a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)
Nên: \(10^{10}-1⋮9\)
b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)
Mà: \(1+0+...+2=3\)
Nên: \(10^{10}+2⋮3\)
c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)
Mà tổng của 2 số chẵn đó là:
\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên
Tổng của 2 số chẵn liên tiêp ko chia hết cho 4
d) Gọi hai số tự nhiên đó là: \(a,a+1\)
Tích của 2 số tự nhiên đó là:
\(a\left(a+1\right)=a^2+a\)
Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn
Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn
Vậy tích của hai số liên tiếp là chẵn
e) Gọi hai số đó là: \(2a,2a+2\)
Tích của hai số đó là:
\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\)
4a(a+1) chia hết cho 8 nên
Tích của hai số tự nhiên liên tiếp chia hết cho 8
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm
c)Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Ta có: a+a+1+a+2+a+3+a+4 =(a+a+a+a+a)+(1+2+3+4) =5.a+10 =5.(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
a) Gọi 2 số chẵn đó là 2k và 2k + 2
Ta có : 2k ( 2k + 2 )
= 2k . 2 ( k + 1 )
= 4 . k . ( k + 1 )
ta có k và k+1 là 2 số liên tiếp => k . ( k + 1 ) chia hết cho 2
=> 4 . k . ( k + 1 ) chia hết cho 8 ( đpcm )
b) Gọi 3 số chẵn liên tiếp là 2a - 2, 2a và 2a + 2
Ta có: (2a - 2)2a(2a + 2)
= (4a2 - 4)2a
= 8a(a2 - 1)
= 8a(a - 1)(a + 1)
Vì a, a - 1 và a + 1 là ba số nguyên liên tiếp
=> a(a - 1)(a + 1) ⋮ 2 và 3
Mà ƯCLN(2, 3) = 0 => a(a - 1)(a + 1) ⋮ 6
=> 8a(a - 1)(a + 1) ⋮ 48
Hay (2a - 2)2a(2a + 2) ⋮ 48
Vậy tích 3 số chẵn liên tiếp chia hết cho 48
22x24
24x26
đó là 22 và 24