\(Q=\left(\frac{2}{2+2\sqrt{a}}+\frac{1}{2-2\sqrt{a}}-\frac{a^2+1}{1-a^2}\right)\left(1+\frac{1}{a}\right)\)
\(=\left(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+a\right)+\left(1+\sqrt{a}\right)\left(1+a\right)-2\left(a^2+1\right)}{2\left(1-a\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{1+a-\sqrt{a}-a\sqrt{a}+1+a+\sqrt{a}+a\sqrt{a}-2a^2-2}{2\left(1-a\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{2a-2a^2}{2\left(1-a\right)\left(1+a\right)}\right)\)
\(=\frac{a}{a}\)= 1