Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác MAOB có
\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: M,A,O,B cùng thuộc một đường tròn(đpcm)
a: Xét ΔEBC và ΔEAB có
góc EBC=góc EAB
góc BEC chung
=>ΔEBC đồng dạng với ΔEAB
=>EB/EA=EC/EB
=>EB^2=EA*EC
b: góc MAK+góc OAK=90 độ
góc BAK+góc OKA=90 độ
mà góc OAK=góc OKA
nên góc MAK=góc BAK
=>AK là phân giác của góc MAB(1)
Xét (O) có
MA,MB là tiếp tuyến
=>MO là phân giác của góc AMB
=>MK là phân giác của góc AMB(2)
Từ (1), (2) suy ra K là tâm đường tròn nội tiếp ΔMAB
Xét ΔMAD và ΔMCA có
góc MAD=góc MCA
góc AMD chung
=>ΔMAD đồng dạng với ΔMCA
=>MA/MC=MD/MA
=>MA^2=MC*MD