Cho 2 đường thẳng xx' và yy' cắt nhau tại O. Gọi Ot và Ot' lần lượt là tia phân giác của góc xOy và góc x'Oy'. Chứng tỏ rằng Ot và Ot' là hai tia đối nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{xOy}=\widehat{x'Oy'}\)(đối đỉnh)
\(\Rightarrow\widehat{yOt}=\widehat{yOt'}\) (đối đỉnh)
Ta có: \(\widehat{xOy}+\widehat{xOy'}=\widehat{tOy'}+\widehat{tOy}=180^o\)
\(\Rightarrow\widehat{tOy}+\widehat{y'Ot'}=\widehat{tOt'}=180^o\)
Lại có: Hai góc đối nhau tao thành góc bẹt 180 độ.
Vậy: Ot và Ot' đối nhau (đpcm)
ta có: xx' cắt yy' tại O
=> góc xOy = góc x'Oy' ( đối đỉnh)
=> góc xOy/2 = góc x'Oy'/2
mà góc O1 = góc xOy/2 ( định lí tia phân giác)
góc O2 = góc xOy/2 ( định lí tia phân giác)
=> góc O1 = góc O2
mà góc O1 = góc xOy/2 => góc O1. 2 = góc xOy
mà góc xOy + góc xOy' = 180 độ
=> góc O1 .2 + góc xOy' = 180 độ
góc O1 + góc O1 + góc xOy' = 180 độ
=> góc O1 + góc O2 + góc xOy' = 180 độ ( góc O1 = góc O2)
=> Ot' là tia đối của tia Ot ( định lí)
a) ta có O1+O2=180=> O2=180-O1=180-36=144
TA CÓ : O1=O3 =36 ( đối đỉnh )
O2=O4 =144 ( đối đỉnh)
b) ta có góc tOt'= góc tOx+O4+góc y'Ot'= \(\frac{36}{2}\)+144+ \(\frac{36}{2}\)=180
=> Ot và Ot' nằm trên cùng đường thẳng
mặt khác Ot và Ot' cùng chung gốc O
=> Ot và Ot' là 2 tia đối
Thấy ^xOy và ^x'Oy' đối đỉnh
=> ^xOy = ^x'Oy'
=> ^x'Oy' = 50o
^xOy và ^x'Oy kề bù
=> ^xOy + ^x'Oy = 180o
=> ^x'Oy = 130o
^x'Oy và xOy' đối đỉnh
=> ^x'Oy = ^xOy'
=> ^xOy' = 130o
Vì Ot là tia p/g xOt
=> xOt = tOy' = xOy'/2 = 65o
Tự tính góc x'ot' và t'Oy
Vì t'Oy và t'Oy' kề bù (oy và oy' đối nhau)
=> t'Oy + t'Oy' = 180o
=> t'Oy' = 115o
Vì x'Ot' < t'Oy' (65 < 115)
=> Ox' nằm giữa Ot' và Oy'
=> Ox là tia đối của Ox' sẽ nằm giữa Ot' và Ot
=> t'Ox + xOt = t'Ot
=> t'Ot = 180o
=> t'Ot là góc bẹt => Ot và Ot' đối nhau
Thông cảm cách làm dài dòng quá
a) Các cặp góc đối đỉnh là:
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\); \(\widehat{x'Oy}\) và \(\widehat{y'Ox}\).
b) + Có tia Ot là tia phân giác của góc xOy
\(\Rightarrow\widehat{xOt}=\widehat{yOt}=\dfrac{\widehat{xOy}}{2}\)
+ Có tia Oz là tia phân giác của góc x'Oy'
\(\Rightarrow\widehat{x'Oz}=\widehat{y'Oz}=\dfrac{\widehat{x'Oy'}}{2}\)
+ Có hai góc xOy' và góc xOy là hai góc kề bù
\(\Rightarrow\widehat{xOy}'+\widehat{xOy}=180^o\)
+ Có hai góc xOy và góc x'Oy' là một cặp góc đối đỉnh
\(\Rightarrow\) \(\widehat{xOy}=\widehat{x'Oy'}\)
\(\Rightarrow\dfrac{\widehat{xOy}}{2}=\dfrac{\widehat{x'Oy'}}{2}\)
\(\Rightarrow\widehat{xOt}=\widehat{y'Oz}=\dfrac{\widehat{xOy}}{2}\)
\(\Rightarrow\widehat{xOt}+\widehat{xOy'}+\widehat{y'Oz}=2\cdot\dfrac{\widehat{xOy}}{2}+\widehat{xOy'}=\widehat{xOy}+\widehat{xOy'}=\widehat{zOt}=180^o\)
nên hai tia Ot và Oz là hai tia đối nhau.
Mong cái này giúp được bạn nhé. ☺