K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

\(\left(x+3\right)\left(1-x\right)>0.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0.\\1-x>0.\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0.\\1-x< 0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3.\\x< 1.\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3.\\x>1.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow-3< x< 1.\)

\(\left(x^2-1\right)\left(x^2-4\right)< 0.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-1< 0.\\x^2-4>0.\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-1>0.\\x^2-4< 0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2< 1.\\x^2>4.\end{matrix}\right.\\\left\{{}\begin{matrix}x^2>1.\\x^2< 4.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1.\\x>-1.\end{matrix}\right.\\\left[{}\begin{matrix}x>2.\\x< -2.\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1.\\x< -1.\end{matrix}\right.\\\left[{}\begin{matrix}x< 2.\\x>-2.\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-1< x< 1.\\\left[{}\begin{matrix}x>2.\\x< -2.\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1.\\x< -1.\end{matrix}\right.\\-2< x< 2.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2.\\x< -2.\\-2< x< -1.\\1< x< 2.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< -2.\\x>2.\end{matrix}\right.\)

a. \(8x\left(x-2007\right)-2x+4034=0\)

\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy x=2017 hoặc x=1/4

b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)

\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy x=0 hoặc x=-4

c.\(4-x=2\left(x-4\right)^2\)

\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)

\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy x=4 hoặc x=7/2

d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)

\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)

Nxet: (x2+3)>0 với mọi x

=> x-2=0 <=>x=2

Vậy x=2

 

18 tháng 7 2023

a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0

     4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0

     4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0

     4\(x^2\) - 8029\(x\) + 2017 = 0

     4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2  + 2017 = 0

    4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017

       \(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\) 

 

 

2 tháng 3 2022

a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

x-21-13-3
x315-1

b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

x-21-113-13
x3115-11

 

c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x+71-12-2
x-6-8-5-9

 

26 tháng 2 2021

X2=3                              x2=25     

=> X=\(\pm\sqrt{3}\)             => x=5

X2=36                           

=> x=6

2.(x-1)2+50= 9

2.(x-1)2+1= 9

2.(x-1)2= 8

(x-1)2 = 8/2

(x-1)= 4 

(x-1)2 = (2)2

x-1=(\(\pm\)2)

TH1: x-1= 2              TH2: x-1=-2

        x=2+1                       x =(-2)+1

        x= 3                          x = -1

Vậy x\(\in\)\(\left\{3;1\right\}\)

25 tháng 12 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+2y^2-4y+3=0\\2x^2+2x^2y^2-4y=0\left(1\right)\end{matrix}\right.\Rightarrow}x^3+2y^2-4y-2x^2-2x^2y^2+4y=0\Rightarrow x^3+1-2x^2y^2+2y^2-2x^2+2=0\Rightarrow\left(x+1\right)\left(x^2-x+1\right)-2y^2\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x^2-x+1-2xy^2+2y^2-2x+2\right)=0\Rightarrow x=-1\)Thay x=-1 vào (1) ta được y2-2y+1=0⇒ (y-1)2=0⇒y-1=0⇒y=1

Do đó Q=x2+y2=(-1)2+12=2

17 tháng 10 2021

\(\left(2x+x^2\right)\left(x^2-3x+2\right)=0\Leftrightarrow x\left(x+2\right)\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\\x=2\end{matrix}\right.\\ A=\left\{-2;0;1;2\right\}\)

\(3\le x^3\le27\Leftrightarrow x\in\left\{2;3\right\}\\ B=\left\{2;3\right\}\)

\(\Leftrightarrow A\cup B=\left\{-2;0;1;2;3\right\}\)

5 tháng 8 2021

PT có 2 nghiệm `<=> \Delta' >=0`

`<=> 4(2m+3)^2 -4(4m^2-3) >=0`

`<=>16m^2+48m+36-16m^2+12>=0`

`<=>m >= -1`

Viet: `{(x_1+x_2=-2m-3),(x_1x_2=4m^2-3):}`

Theo đề: `x_1^2+x_2^2=1/2`

`<=>(x_1+x_2)^2-2x_1x_2=1/2`

`<=>(-2m-3)^2 -2(4m^2-3)=1/2`

`<=>-4m^2+12m+15=1/2`

`<=>` \(\left[{}\begin{matrix}m=\dfrac{6+\sqrt{94}}{4}\left(TM\right)\\m=\dfrac{6-\sqrt{94}}{4}\left(L\right)\end{matrix}\right.\)

Vậy....

25 tháng 8 2019

a) x = -1.                      b) x = 4 hoặc x = 5.

c) x = ± 2 .                  d) x = 1 hoặc x = 2.