Tính nhanh:
1.2.3+2.3.4+3.4.5+4.5.6+5.6.7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trở lại bài toỏn 2. mỗi hạng tử của tổng A cú hai thừa số thỡ ta nhõn A với 3 lần khoảng cỏch giữa hai thừa số đó. Học tập cách đó , trong bài này ta nhõn hai vế của A với 4 lần khoảng cách đó vỡ ở đây mỗi hạng tử cú 3 thừa số .Ta giải được bài toỏn như sau :
A = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10
4A = (1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10).4
4A = [1.2.3.(4 – 0) + 2.3.4.(5 – 1) + + 8.9.10.(11 – 7)]
4A = (1.2.3.4 – 1.2.3.4 + 2.3.4.5 – 2.3.4.5 + + 7.8.9.10 – 7.8.9.10 + 8.9.10.11) 4A = 8.9.10.11 = 1980.
Từ đó ta cú kết quả tổng quỏt
1.2.3+2.3.4+3.4.5+4.5.6+5.6.7+6.7.8+7.8.9+8.9.10=\(\frac{8.9.10.11}{4}=1980\)
cái này sử dụng phương pháp quy nạp toán học
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+\frac{1}{4.5.6}+\frac{1}{5.6.7}+\frac{1}{6.7.8}+\frac{1}{7.8.9}+\frac{1}{8.9.10}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+\frac{2}{4.5.6}+\frac{2}{5.6.7}+\frac{2}{6.7.8}+\frac{2}{7.8.9}+\frac{2}{8.9.10}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{4.5}-\frac{1}{5.6}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
\(2A=\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)
\(A=\frac{22}{45}:2=\frac{11}{45}\)
1/ 1.2.3 + 1/ 2.3.4 + 1/ 3.4.5+1/4.5.6+1/5.6.7+1/6.7.8+1/7.8.9+1/8.9.10
= 1 - 1/2 - 1/3 + 1/2 - 1/3 - 1/4 + 1/3 - 1/4 - 1/5 + 1/5 - 1/6 - 1/7 + 1/6 - 1/7 - 1/8 + 1/7 - 1/8 - 1/9 + 1/8 - 1/9 - 1/10
= 1 - 1/10
= 9/10
. mỗi hạng tử của tổng A có hai thừa số thì ta nhân A với 3 lần khoảng cách giữa hai thừa số đó. Häc tËp c¸ch ®ã , trong bài này ta nhân hai vế của A với 4 lần khoảng cách đó vì ở đây mỗi hạng tử có 3 thừa số .Ta giải được bài toán nh sau :
A = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10
4A = (1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10).4
4A = [1.2.3.(4 – 0) + 2.3.4.(5 – 1) + ... + 8.9.10.(11 – 7)]
4A = (1.2.3.4 – 1.2.3.4 + 2.3.4.5 – 2.3.4.5 + ... + 7.8.9.10 – 7.8.9.10 + 8.9.10.11) 4A = 8.9.10.11 = 1980.
Tõ ®ã ta có kết quả tổng quát
A = 1.2.3 + 2.3.4 + 3.4.5 + ... + (n – 1).n.(n + 1).= (n -1).n.(n + 1)(n + 2)/4
Ta có: \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
Đặt A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)
2A=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{8.9.10}\)
2A=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}\) \(+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
2A=\(\frac{1}{1.2}-\frac{1}{9.10}\)
2A=\(\frac{22}{45}\)
A=\(\frac{22}{45}\div2\)
A=\(\frac{11}{45}\)
\(\Rightarrow\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}\div\frac{11}{45}=\frac{23}{11}\)
Vậy x=\(\frac{23}{11}\)
A=1(2+1)+2(3+1)+3(4+1)+...+99(100 +1 )
A=1.2+1+2.3+2+3.4+3...99.100+99
A=(1.2+2.3+3.4+...99.100)+(1+2+3+4...99)
giải:
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
Đặt A=1.2.3+2.3.4+.....+5.6.7
4A=1.2.3.4+2.3.4.(5-1)+.........+5.6.7.(8-4)
4A=1.2.3.4+2.3.4.5-1.2.3.4+........+5.6.7.8-4.5.6.7
4A=5.6.7.8
A=5.6.7.8:4
A=420