K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

S=1/30+1/31+1/32+1/33+...+1/59+1/60

S có 31 phân số,ta thấy:

1/30>1/62                             1/31>1/62                          1/32>1/62         ............          1/60>1/62

Vậy:

S>31.1/62

S>31/62

S>1/2

Vậy S>1/2

Chúc em học tốt^^

27 tháng 3 2019

nhanh đi

30 tháng 3 2023

ai trả lời đúng mình tặng coin

 

6 tháng 5

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5

13 tháng 2 2018

giúp mình nhé. ai nhanh mình tick cho

5 tháng 12 2016

Ta có: \(S=1+3+3^2+...+3^{20}\)

\(\Rightarrow3S=3+3^2+3^3+...+3^{21}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{21}\right)-\left(1+3+3^2+...+3^{20}\right)\)

\(\Rightarrow2S=3^{21}-1\)

\(\Rightarrow S=\left(3^{21}-1\right).\frac{1}{2}\)

\(\Rightarrow S=3^{21}.\frac{1}{2}-\frac{1}{2}\)

\(3^{21}.\frac{1}{2}-\frac{1}{2}< 3^{21}.\frac{1}{2}\) nên \(A< \frac{1}{2}.3^{21}\)

Vậy \(A< \frac{1}{2}.3^{21}\)