so sanh S=1/30+1/31+1/32+....+1/59+1/60 voi 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
Ta có: \(S=1+3+3^2+...+3^{20}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{21}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{21}\right)-\left(1+3+3^2+...+3^{20}\right)\)
\(\Rightarrow2S=3^{21}-1\)
\(\Rightarrow S=\left(3^{21}-1\right).\frac{1}{2}\)
\(\Rightarrow S=3^{21}.\frac{1}{2}-\frac{1}{2}\)
Vì \(3^{21}.\frac{1}{2}-\frac{1}{2}< 3^{21}.\frac{1}{2}\) nên \(A< \frac{1}{2}.3^{21}\)
Vậy \(A< \frac{1}{2}.3^{21}\)
S=1/30+1/31+1/32+1/33+...+1/59+1/60
S có 31 phân số,ta thấy:
1/30>1/62 1/31>1/62 1/32>1/62 ............ 1/60>1/62
Vậy:
S>31.1/62
S>31/62
S>1/2
Vậy S>1/2
Chúc em học tốt^^