(Hải Phòng)
1) Cho \(a,b\)là hai số dương. Chứng minh rằng
\(3\left(b^2+2a^2\right)\ge\left(b+2a\right)^2\).
2) Cho \(a,b,c\)là ba số dương thỏa mãn điều kiện \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2}\). Chứng minh rằng
\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\).