Cho tam giác abc có ba góc nhọn, nội tiếp đường tròn. Hai đường cao BE và CF của tgiac abc cắt nhau tại H
a) Chứng minh tứ giác BFEC nội tiếp
b) Tia BE cắt (0) tại P, tia CF cắt (0) tại Q. Chứng minh góc FEB = FCB và EF // với PQ
c) Cm OA vuông góc với PQ
d) Tính bán kính đường tròn ngoại tiếp tgiac EFH theo R khi BC = R căn 3
GIÚP MÌNH CÂU D NHANH NHÉ, MÌNH CẢM ƠN NHIỀU!!!