Biết 2n + 1 và 3n + 1 là các số chính phương. C/m :
a/ n chia hết cho 60
b/ 5n + 3 là hợp số
Cách làm + đáp số = tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ra rồi nhé bạn,chờ xíu mình C/M cho. Đang bấm giữa chừng thì tự nhiên lỡ tay bấm nút thoát :|
\(2n+1=a^2\)
Xét a chẵn : \(a^2=\left(2k\right)^2=4k^2\)
\(2n+1=4k^2\Rightarrow2n=4k^2-1\)mà \(4k^2-1\)là số lẻ nên không tồn tại 2n lẻ
Xét a lẻ : \(a^2=\left(2k+1\right)^2=4k^2+4k+1\)
\(\Rightarrow2n=4k^2+4k=k\left(4k+4\right)=4\left(k^2+k\right)\)là số chẵn
\(\Rightarrow\)n là số chẵn
Vì n là số chẵn nên 3a+1 là số lẻ
\(\Rightarrow3n+1=\left(2p+1\right)^2\)
\(\Rightarrow2n+1+3n+1+1=\left(2k+1\right)^2+\left(2p+1\right)^2+1=5n+3\)
Xét \(2n+1< 3n+1\Leftrightarrow\left(2k+1\right)^2< \left(2p+1\right)^2\)
Vì cả \(2n+1\)và \(3n+1\)đều là số lẻ nên....(Bí)
mk chỉ bít câu a thui: mk viết xn là x^n cho đỡ mất tjan
x6-7x3-8=0
=> x6-8x3+x3-8=0
=> x3(x3-8)+(x3-8)=0
=>(x3-8)(x3+1)=0
=> x3-8=0 hoặc x3+1=0
=>(x-2)(x2+x+4)=0 hoặc (x+1)(x2-x+1)=0
=> x-2=0 hoặc x+1=0( vì x2+x+4 và x2-x+1 luôn lớn hơn 0 với mọi x)
=> x=2 hoặc x=-1
chúc bn hok tốt ^-^
Đặt 2n+1=a2,3n+1=b2(\(a,b\in N;a,b>1\))
Ta có: 4(2n+1)-3n+1=4a2-b2
<=> 5n+3=(2a+b)(2a-b)
=> 5n+3 là hợp số
Nếu tôi ngu thì cậu thử làm đi?Cả cách làm cụ thể nhé!
Bạn tham khảo bài làm của vài bn khác nhé ! ( Ấn vào Câu hỏi tương tự ý )
Mik phải đi ngủ rồi !
-Bye-