Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: ΔAIE cân tại A
mà AK là đường phân giác
nên K là trung điểm của EI
hay KE=KI
c: Xét ΔAID và ΔAED có
AI=AE
\(\widehat{IAD}=\widehat{EAD}\)
AD chung
Do đó: ΔAID=ΔAED
Suy ra: \(\widehat{AID}=\widehat{AED}=90^0\)
=>DE⊥AB
mà AC⊥AB
nên DE//AC
(hình tự vẽ,gt kl tự viết).
a) xét \(\Delta ADB\) và \(\Delta EDC\) có:
góc BAD = góc CED(=90 độ)
góc BDA = góc CDE(đối đỉnh)
=> \(\Delta ADB\sim\Delta EDC\left(g.g\right)\)
Bài 2:
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là phân giác của \(\widehat{BAC}\)
Bài 1:
a: XétΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔBAE=ΔBDE
b: ΔBAE=ΔBDE
=>EA=ED
Xét ΔEAF vuông tại A và ΔEDC vuông tại D có
EA=ED
\(\widehat{AEF}=\widehat{DEC}\)
Do đó: ΔEAF=ΔEDC
=>EF=EC
b: Xét ΔEAK và ΔIAK có
AE=AI
\(\widehat{EAK}=\widehat{IAK}\)
AK chung
Do đó: ΔEAK=ΔIAK
Suy ra: KE=KI