Tìm chữ số tận cùng của:
a) 234 mũ 5 mũ 6 mũ 7 .
b) 579 mũ 6 mũ 7 mũ 5 .
Bạn nào biết chỉ nha, giải cụ thể ra nha.
Ai làm nhanh nhất mình tick cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(234^{5^{6^7}}=234^{210}\)=...6
-Lũy thừa mà cơ số có tận cùng là 4, số mũ là số chẵn thì tận cùng của lũy thừa đó là 6
b) \(579^{6^{7^5}}=579^{210}\)=...1
-Lũy thừa mà cơ số có tận cùng là 4, số mũ là số chẵn thì tận cùng của lũy thừa đó là 1
a; \(234^{5^{6^7}}\) Ta có 5 \(\equiv\) 1 (mod 4) ⇒ 5\(^{6^7}\) \(\equiv\) 1 (mod 4)
Đặt \(5^{6^7}\) = 4k + 1
Ta có: \(234^{5^{6^7}}\) = 2344k+1 = (2344)k.234 = \(\overline{..6^{ }}\)k.234 = \(\overline{..4}\)
b; \(579^{6^{7^5}}\)
6 ⋮ 2 ⇒ \(6^{7^5}\)⋮ 2 ⇒ \(6^{7^5}\) = 2k
\(579^{6^{7^5}}\) = \(579^{2k}\) = \(\left(579^2\right)^k\) = \(\overline{..1}\)k = \(\overline{..1}\)
Tìm chữ số tận cùng của \(234^{6^{7^8}}\):
\(7^{4n}\)có chữ số tận cùng là 1 => \(7^8\)có chữ số tận cùng là 1.
Ta có: \(234^{6^{\left(...1\right)}}\)
\(6^n\)có chữ số tận cùng là 6 (n \(\in\) N*) => \(6^{\left(...1\right)}\)có chữ số tận cùng là 6.
Ta lại có: \(234^{\left(...6\right)}\)
Số có chữ số tận cùng là 4 khi nâng lên lũy thừa với số mũ 6 luôn có chữ số tận cùng là 6 =>\(234^{\left(...6\right)}\)có chữ số tận cùng là 6.
Kết luận \(234^{6^{7^8}}\)có chữ số tận cùng là 6.
Mình chắn chắn 100%. Mình đã mất công ghi lời giải rồi thì bạn chọn Đúng cho mình đi !
3 không chia hết cho 2 nên
\(3^{5^7}\) không chia hết cho 2
Vậy A = 19992k+1
A = (19992)k.1999
A = \(\overline{...1}\)k.1999
A = \(\overline{..9}\)
Vì 6 ⋮ 2 nên \(6^{8^9}\) ⋮ 2
Vậy B = 20242k = (20242)k = \(\overline{..6}\)k = \(\overline{..6}\)
\(234^{5^{6^7}}\)có tận cùng là 6
vì 2345 = ........4
.....46 = .............6
.............67 = ..............6
a)\(234^{5^{6^7}}=234^{210}\)=...6
-Lũy thừa mà cơ số có tận cùng là 4, số mũ là số chẵn thì tận cùng của lũy thừa đó là 6
b)\(579^{6^{7^5}}=579^{210}\)=...1
-Lũy thừa mà cơ số có tận cùng là 9, số mũ là số chẵn thì tận cùng của lũy thừa đó là 1