Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(234^{5^{6^7}}=234^{210}\)=...6
-Lũy thừa mà cơ số có tận cùng là 4, số mũ là số chẵn thì tận cùng của lũy thừa đó là 6
b) \(579^{6^{7^5}}=579^{210}\)=...1
-Lũy thừa mà cơ số có tận cùng là 4, số mũ là số chẵn thì tận cùng của lũy thừa đó là 1

a; \(234^{5^{6^7}}\) Ta có 5 \(\equiv\) 1 (mod 4) ⇒ 5\(^{6^7}\) \(\equiv\) 1 (mod 4)
Đặt \(5^{6^7}\) = 4k + 1
Ta có: \(234^{5^{6^7}}\) = 2344k+1 = (2344)k.234 = \(\overline{..6^{ }}\)k.234 = \(\overline{..4}\)
b; \(579^{6^{7^5}}\)
6 ⋮ 2 ⇒ \(6^{7^5}\)⋮ 2 ⇒ \(6^{7^5}\) = 2k
\(579^{6^{7^5}}\) = \(579^{2k}\) = \(\left(579^2\right)^k\) = \(\overline{..1}\)k = \(\overline{..1}\)

_A=2^1+2^2+2^3+...+2^2010
A=(2^1+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
A=2.(1+2)+2^3.(1+2)+...+2^2019.(1+2)
A=2.3+2^3.3+...+2^2009.3
A=3.(2+2^3+...+2^2009)
Vậy A chia hết cho 3.
_A=2^1+2^2+2^3+...+2^2010
A=(2^1+2^2+2^3)+(2^4+2^5+2^6)+...+ (2^2008+2^2009+2^2010)
A=2.(1+2+2^2)+2^4.(1+2+2^2)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+...+2^2008.7
A=7.(2+2^4+...+2^2008)
Vậy A chia hết cho 7.
=> A ⋮ 3, A ⋮ 7.
Lưu ý ^ là mũ nhé !!! (^-^)

Tìm chữ số tận cùng của \(234^{6^{7^8}}\):
\(7^{4n}\)có chữ số tận cùng là 1 => \(7^8\)có chữ số tận cùng là 1.
Ta có: \(234^{6^{\left(...1\right)}}\)
\(6^n\)có chữ số tận cùng là 6 (n \(\in\) N*) => \(6^{\left(...1\right)}\)có chữ số tận cùng là 6.
Ta lại có: \(234^{\left(...6\right)}\)
Số có chữ số tận cùng là 4 khi nâng lên lũy thừa với số mũ 6 luôn có chữ số tận cùng là 6 =>\(234^{\left(...6\right)}\)có chữ số tận cùng là 6.
Kết luận \(234^{6^{7^8}}\)có chữ số tận cùng là 6.
Mình chắn chắn 100%. Mình đã mất công ghi lời giải rồi thì bạn chọn Đúng cho mình đi !

A = \(9999^{999^{99^9}}\)
Vì 999 không chia hết cho 2 nên \(999^{99^9}\) không chia hết cho 2
Vậy \(999^{99^9}\) = 2k + 1
A = 99992k+1
A = (99992)k.9999
A = \(\overline{...1}\)k. 9999
A = \(\overline{..1}\).9999
A = \(\overline{..9}\)
B = vì 8 ⋮ 2 nên \(8^{7^{6^{5^{3^2}}}}\) ⋮ 2
Vậy B = 92k = (92)k = \(\overline{..1}\)k = \(\overline{..1}\)

3 không chia hết cho 2 nên
\(3^{5^7}\) không chia hết cho 2
Vậy A = 19992k+1
A = (19992)k.1999
A = \(\overline{...1}\)k.1999
A = \(\overline{..9}\)
Vì 6 ⋮ 2 nên \(6^{8^9}\) ⋮ 2
Vậy B = 20242k = (20242)k = \(\overline{..6}\)k = \(\overline{..6}\)
a)\(234^{5^{6^7}}=234^{210}\)=...6
-Lũy thừa mà cơ số có tận cùng là 4, số mũ là số chẵn thì tận cùng của lũy thừa đó là 6
b)\(579^{6^{7^5}}=579^{210}\)=...1
-Lũy thừa mà cơ số có tận cùng là 9, số mũ là số chẵn thì tận cùng của lũy thừa đó là 1