Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(234^{5^{6^7}}=234^{210}\)=...6
-Lũy thừa mà cơ số có tận cùng là 4, số mũ là số chẵn thì tận cùng của lũy thừa đó là 6
b) \(579^{6^{7^5}}=579^{210}\)=...1
-Lũy thừa mà cơ số có tận cùng là 4, số mũ là số chẵn thì tận cùng của lũy thừa đó là 1
a; \(234^{5^{6^7}}\) Ta có 5 \(\equiv\) 1 (mod 4) ⇒ 5\(^{6^7}\) \(\equiv\) 1 (mod 4)
Đặt \(5^{6^7}\) = 4k + 1
Ta có: \(234^{5^{6^7}}\) = 2344k+1 = (2344)k.234 = \(\overline{..6^{ }}\)k.234 = \(\overline{..4}\)
b; \(579^{6^{7^5}}\)
6 ⋮ 2 ⇒ \(6^{7^5}\)⋮ 2 ⇒ \(6^{7^5}\) = 2k
\(579^{6^{7^5}}\) = \(579^{2k}\) = \(\left(579^2\right)^k\) = \(\overline{..1}\)k = \(\overline{..1}\)
Tìm chữ số tận cùng của \(234^{6^{7^8}}\):
\(7^{4n}\)có chữ số tận cùng là 1 => \(7^8\)có chữ số tận cùng là 1.
Ta có: \(234^{6^{\left(...1\right)}}\)
\(6^n\)có chữ số tận cùng là 6 (n \(\in\) N*) => \(6^{\left(...1\right)}\)có chữ số tận cùng là 6.
Ta lại có: \(234^{\left(...6\right)}\)
Số có chữ số tận cùng là 4 khi nâng lên lũy thừa với số mũ 6 luôn có chữ số tận cùng là 6 =>\(234^{\left(...6\right)}\)có chữ số tận cùng là 6.
Kết luận \(234^{6^{7^8}}\)có chữ số tận cùng là 6.
Mình chắn chắn 100%. Mình đã mất công ghi lời giải rồi thì bạn chọn Đúng cho mình đi !
3 không chia hết cho 2 nên
\(3^{5^7}\) không chia hết cho 2
Vậy A = 19992k+1
A = (19992)k.1999
A = \(\overline{...1}\)k.1999
A = \(\overline{..9}\)
Vì 6 ⋮ 2 nên \(6^{8^9}\) ⋮ 2
Vậy B = 20242k = (20242)k = \(\overline{..6}\)k = \(\overline{..6}\)
\(234^{5^{6^7}}\)có tận cùng là 6
vì 2345 = ........4
.....46 = .............6
.............67 = ..............6
a)\(234^{5^{6^7}}=234^{210}\)=...6
-Lũy thừa mà cơ số có tận cùng là 4, số mũ là số chẵn thì tận cùng của lũy thừa đó là 6
b)\(579^{6^{7^5}}=579^{210}\)=...1
-Lũy thừa mà cơ số có tận cùng là 9, số mũ là số chẵn thì tận cùng của lũy thừa đó là 1