A = (1 - 1/2) x (1 - 1/3) x (1 - 1/4) x (1 - 1/5) x ... (1 - 1/2016) x (1 - 1/2017)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1-1/2)x(1-1/3)x.................x(1-1/2017)
A=\(\frac{1}{2}\times\frac{2}{3}\)x....x\(\frac{2016}{2017}\)
A=\(\frac{1}{2017}\)
a.
\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)
c.
\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)
D. Tìm x thuộc Z biết
x+(x+1)+(x+2)+....+2016+2017=2017
=> ( x + x + x + ..+ x ) + ( 1 + 2 + 3+...+2016 + 2017 ) = 2017
<=> 2017x + 2035153 = 2017
=> 2017x = -2033136
=> x = -1008
Vậy ...
cảm ơn bạn nhưng bạn có biết những câu hỏi còn lại ko
Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có:
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017
Cách 2:
Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có:
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017
Cách 2:
\(A=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{2015}{2016}\times\frac{2016}{2017}=\frac{1}{2017}\)