K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

a:Xét ΔABD có AB=AD

nên ΔABD cân tại A

=>\(\widehat{ABD}=\widehat{ADB}\)

mà \(\widehat{ABD}=\widehat{BDC}\)

nên \(\widehat{ADB}=\widehat{BDC}\)

mà \(\widehat{BCD}=\widehat{ADC}=\widehat{ADB}+\widehat{BDC}\)

nên \(\widehat{BCD}=2\cdot\widehat{BDC}\)

=>\(\widehat{BCD}=\dfrac{2}{3}\cdot90^0=60^0\)

=>\(\widehat{ADC}=60^0\)

=>\(\widehat{BAD}=\widehat{ABC}=120^0\)

b: Gọi M là trung điểm của CD

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{CAD}=\widehat{DBC}=90^0\)

Ta có: ΔDBC vuông tại B

mà BM là đường trung tuyến

nên BM=MC

=>ΔBMC cân tại M

mà \(\widehat{MCB}=60^0\)

nên ΔBMC đều

=>BC=MC

Ta có: ΔADC vuông tại A

mà AM là đường trung tuyến

nên MA=MD

=>ΔMAD cân tại M

mà \(\widehat{ADM}=60^0\)

nên ΔMAD đều

=>AD=DM

DM+MC=DC

nên DC=AD+BC=2AB(đpcm)