K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD vuông tại A và ΔKBD vuông tại K có 

BD chung

\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))

Do đó: ΔABD=ΔKBD(Cạnh huyền-góc nhọn)

10 tháng 5 2021

Ồ mơn ạ

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)

Suy ra: AH=AK(hai cạnh tương ứng)

b) Ta có: \(\widehat{BDA}+\widehat{DAH}=90^0\)

\(\widehat{BAD}+\widehat{KAD}=90^0\)

mà \(\widehat{DAH}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

nên \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔABD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔABD cân tại B(Định lí đảo của tam giác cân)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

11 tháng 7 2021


 

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)

c) Ta có: ΔADH vuông tại H(gt)

nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)

Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔBAD cân tại B(Định lí đảo của tam giác cân)

14 tháng 5 2022

a) Xét △ABC vuông tại A có:

BC² = AC² + AB² (ĐL Pytago)

BC² = 8² + 6²

BC² = 100

BC = 10 cm

Vậy BC = 10 cm

b) Xét △ABD và △EBD có:

góc BAD = góc BED (=90°)

BD chung

góc ABD = góc EBD (BD là tia p/g của góc ABC)

=> △ABD = △EBD (ch-gn)

c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á

 

14 tháng 5 2022

Câu 3 là phần c nha

 

17 tháng 4 2019

bn tham khảo câu hỏi của bn Viêt Thanh Nguyễn Hoàng nhé, bài ấy mik cx làm đấy

1 tháng 5 2020

a) Có tam giác ABC vuông tại A

=>BC2=AC2+AB2 ( định lí Pitago)

=>BC2=82+62=100

=> BC=10 (cm)

b) Xét tam giác vuông ABE và tam giác vuông KBE có

Cạnh BE chung

Góc DBA= góc DBK hay góc EBA= góc EBK ( vì BD là tia phân giác của góc ABC)

=> tam giác ABE= tam giác KBE( cạnh góc vuông- góc nhọn)

=> BA=BK ( 2 cạnh tương ứng)

Vạy tam giác ABK cân tại B

c) Nối D với K, ta có tam giác DKE vuông tại E

Theo câu b, ta có tam giác ABE= tam giác KBE

=> KE=EA( 2 cạnh tương ứng) và góc EAB=góc EKB (1)

Xét tam giác vuông DEA và tam giác vuông DEK có

Cạnh DE chung

EA=KE

=> tam giác DEA= tam giác DEK ( 2 cạnh góc vuông)

=> Góc DAE=góc DKE (2)

Từ (1) và (2)  =>góc DKE+ góc EKB=góc DAE+ góc EAB= góc DAB=90 độ

=> Góc DKB= 90 độ

Vậy DK vuông góc với BC

1 tháng 3 2021

a) Xét tam giác ABD và KBD có :

\(\widehat{BAD}=\widehat{BKD}=90^o\)

BD chung

\(\widehat{ABD}=\widehat{KBD}\left(gt\right)\)

=> tam giác ABD = tam giác KBD (ch-gn)

b) Tam giác ABD = tam giác KBD => AB = KB (2 cạnh tương ứng)

c) tam giác ABD = tam giác KBD => AD = KD (2 cạnh tương ứng)

Xét tam giác ADH và tam giác KDC có 

\(\widehat{ADH}=\widehat{KDC}\)(đối đỉnh)

AD = KD(cmt)

\(\widehat{DAH}=\widehat{DKC}=90^o\)

=> tam giác ADH = tam giác KDC (g.c.g)

=> DH = DC (2 cạnh tg ứng)

=> tam giác DCH cân tại D

=> \(\widehat{DCH}=\widehat{DHC}\)

1 tháng 3 2021

a, Xét tam giác ABD vuông tại A và tam giác KBD vuông tại K ta có: 

BD: cạnh chung; \(\widehat{ABD}=\widehat{KBD}\)

Do đó \(\Delta ABD=\Delta KBD\) 

b, Vì  \(\Delta ABD=\Delta KBD\) nên $AB=KB;AD=KD$ 

c, Xét tam giác ADH vuông tại A và tam giác KDC vuông tại K ta có: 

$AD=KD(cmt)$;\(\widehat{ADH}=\widehat{KDC}\)(dd)

Do đó \(\Delta ADH=\Delta KDC\)

Hay DH=DC. Suy ra \(\widehat{DHC}=\widehat{DCH}\)

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

4 tháng 5 2022

db

 

 

26 tháng 4 2018

hình tự vẽ nhé,

a) Xét \(\Delta ABD\)và \(\Delta KBD\)có :

BD ( cạnh chung )

\(\widehat{ABD}=\widehat{KBD}\)( gt )

Suy ra : \(\Delta ABD\)\(\Delta KBD\)( cạnh huyền - góc nhọn )

b) Theo câu a , \(\Delta ABD\)\(\Delta KBD\) \(\Rightarrow\)AB = BK

gọi giao điểm của BD và AK là I

xét \(\Delta ABI\)và \(\Delta KBI\)có :

BI ( cạnh chung )

\(\widehat{ABD}=\widehat{KBD}\)( gt )

AB = BK ( cmt )

Suy ra : \(\Delta ABI\)\(\Delta KBI\)( c.g.c )

\(\Rightarrow\)AI = IK ( 1 ) và \(\widehat{AIB}\)và \(\widehat{KIB}\)

Mà \(\widehat{AIB}\)\(\widehat{KIB}\)\(180^o\)\(\Rightarrow\)\(\widehat{AIB}\)\(\widehat{KIB}\)\(90^o\)\(\Rightarrow\)BI \(\perp\)AK ( 2 )

Từ ( 1 )  và ( 2 ) \(\Rightarrow\)BD là đường trung trực của AK