một số có 2 chữ số .biết rằng chữ số hàng đơn vị gấp 3 lần chữ số hàng chục .nếu đổi chỗ 2 chữ số cho nhau ta được số mới lớn hơn số cũ 54 đơb vị .tìm số ban đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là = 10a + b (a, b ∈ N. 0 < a < b < 10)
Ta có b = 3a
Khi đổi hai chữ số ta được số = 10b + a
Vì số mới lớn hơn số cũ 54 đơn vị nên ta có phương trình: 10b + a – 54 = 10a + b
⇔ 9b – 9a = 54
⇔ 9.3a – 9a = 54
⇔ 18a = 54
⇔ a =3 (tmđk)
Vậy số ban đầu cần tìm là 39.
Ta có các số tự nhiên có 2 chữ số mà chữ só hàng đơn vị gấp ba lần chữ số hàng chục là 39;26;13
ta lần lượt thử các số
viết ngược của 13 là 31, lớn hơn số ban đầu : 31-13=18 (loại)
viết ngược của 26 là 62, lớn hơn số ban đầu :62-26=36 (loại)
viết ngược của 39 là 93, lớn hơn số ban đầu :93-39=54 (thỏa mãn)
Vậy số cần tìm là 39
= > Ta có các số : 31 ; 62 ; 93
Mà : 31 - 13 = 18 ( loại )
62 - 26 = 26 ( chọn )
93 - 39 = 54 ( loại )
Vậy = > Số đó là : 62
Đáp số: 45
\(4\times2=8\)
\(8-5=3\)
Đổi chỗ 2 số ta được 54 lớn hơn 45 là 9 đơn vị.
Học tốt (◠‿◠)
Số đó có dạng: ab và ba
ab - ba = 54
Hàng chục gấp 3 lần hàng đơn vị -> số đó là 31, 62, 93
31 - 13 = 18 ( loại )
62 - 26 = 36 ( loại )
93 - 39 = 54 ( lấy )
Vậy số là 54
Nhớ k cho mk nhé
Gọi số cần tìm là \(ab\left(ab\in N.0< a< b< 10\right)\)
Ta có : \(b=3a\)
Khi đổi hai chữ số ta được số \(ba=10b+a\)
Vì số mới lớn hơn số cũ 54 đơn vị nên ta có phương trình:
\(10b+a-54=10a+b\)
\(\Leftrightarrow9b-9a=54\)
\(\Leftrightarrow9.3a-9a=54\)
\(\Leftrightarrow18a=54\)
\(\Leftrightarrow a=3\left(tm\right)\)
Mà \(b=3a\) nên \(b=3\times3=9\left(tm\right)\)
Vậy số cần tìm là \(39\)