Cho tam giác ABC cân tại A
Cho tam giác ABC cân tại A, góc B = 60 độ. Trên tia đối của BC lấy điểm m, trên tia đối của CB lấy điểm N sao cho BM=CN
a)C/m AB=AC
b)C/m tam giác ABM =tam giác ACN
c)C/m tam giác AMN là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó:ΔABM=ΔACN
b: Xét ΔHMB vuông tại H và ΔKNC vuông tại K có
MB=NC
\(\widehat{M}=\widehat{N}\)
Do đó: ΔHMB=ΔKNC
Suy ra: BH=CK
c: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
BH=CK
Do đó:ΔABH=ΔACK
Suy ra: AH=AK
Xét ΔAMN có AH/AM=AK/AN
nên HK//MN
hay HK//BC
d: Ta có: ΔHBM=ΔKCN
nên \(\widehat{HBM}=\widehat{KCN}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
a: Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
b:
Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
=>AM=AN
=>ΔAMN cân tại A
c: Ta có: ΔABC cân tại A
=>\(\widehat{ABC}\) nhọn
=>\(\widehat{ABM}=180^0-\widehat{ABC}>90^0\)
Xét ΔABM có \(\widehat{ABM}>90^0\)
mà AM là cạnh đối diện của góc ABM
nên AM là cạnh lớn nhất trong ΔABM
=>AM>AB
mà AB=AC
nên AM>AC
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔBME=ΔCNF
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔBEM vuông tại E và ΔCFN vuông tại F có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó:ΔBEM=ΔCFN
c: Ta có: ΔBEM=ΔCFN
nên \(\widehat{BEM}=\widehat{CFN}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
=>OB=OC
hay O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
Ta có: ΔAMN cân tại A
mà AO là đường cao
nên AO là phân giác của góc MAN
a: Ta có: ΔABC cân tại A
nên AB=AC
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
c: Ta có: ΔABM=ΔACN
nên AM=AN
hay ΔAMN cân tại A
Giúp mik vs mn, đang cầm gấp ạ