cho tam giác ABC cân tại A, kẻ BH vuông với AC( H thuộc AC) biết AH=6cm, CH=4cm. Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 ta có :
AC=AH+HC=6+4=10cm
Vì ΔABC cân tại A nên AB=AC=10cm
Vì ΔABH vuông tại H
⇒AB\(^2\)=AH\(^2\)+BH\(^2\)
⇒10\(^2\)=6\(^2\)+BH\(^2\)
⇒BH=8cm
Vì ΔBHC vuông tại H
⇒BC\(^2\)=BH\(^2\)+CH\(^2\)
⇒BC\(^2\)=8\(^2\)+4\(^2\)
⇒BC=4\(\sqrt{5}\)cm
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
a) Chứng minh HB=HC: Xét ΔAHB và ΔAHC có: ∠AHB=∠AHC=90(độ) AH cạnh chung AB=AC(gt) ⇒ ΔAHB = ΔAHC (ch-cgv) ⇒ HB=HC (2 cạnh tương ứng)
b) Ta có: HB=HC=BC/2=6/2=3(cm) Ta có: ΔAHB vuông tại H. ⇒ AH(mũ 2)+BH(mũ 2)=AB(mũ 2) ⇒ AH(mũ 2)=AB(mũ 2)-BH(mũ 2) =4(mũ 2)-3(mũ 2)=16-9=7 ⇒ AH=√7(cm)
c) Ta có: ΔAHB = ΔAHC ⇒ ∠BAH=∠CAH Xét ΔAHD và ΔAHE có: ∠D=∠E=90(độ) AH cạnh chung ∠BAH=∠CAH (gt) ⇒ ΔAHD = ΔAHE (ch-gn) ⇒ DH=EH ⇒ ΔHDE cân tại H. A B C H D E
cho tam giác ABC vuông cân ở A, biết AB=6cm, AC=8cm, kẻ AH vuông góc với BC tại H. Tính AH, BH và HC
a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔACH\(\sim\)ΔBCA(g-g)
\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AC^2=CH\cdot CB\)(đpcm)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:
\(CH\cdot10=8^2=64\)
hay CH=6,4(cm)
Ta có: CH+BH=BC(H nằm giữa B và C)
nên BH=BC-CH=10-6,4=3,6(cm)
Vậy: BH=3,6cm; CH=6,4cm
c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=BH\cdot CH\)(đpcm)
Ta có: AB = AC ( ABC cân )
Mà AC = AH + CH = 6 + 4 = 10cm
=> AB = 10 cm
Áp dụng địnhl iý pitago vào tam giác vuông AHB, có:
\(AB^2=AH^2+HB^2\)
\(\Rightarrow HB=\sqrt{AB^2-AH^2}=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
Áp dụng định lý pitago vào tam giác vuông BHC, có:
\(BC^2=BH^2+CH^2\)
\(\Rightarrow BC=\sqrt{8^2+4^2}=\sqrt{80}=4\sqrt{5}cm\)
bài 1 ta có :
Vì ΔABC cân tại A nên AB=AC=10cm
Vì ΔABH vuông tại H
Vì ΔBHC vuông tại H