K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 3 2022

Đặt \(f\left(x\right)=ax^2+bx+c\)

Hàm f(x) liên tục trên R

Ta có:  \(f\left(1\right)=a+b+c\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{a}{4}+\dfrac{b}{2}+c\)

\(\Rightarrow f\left(1\right)+f\left(\dfrac{1}{2}\right)=\dfrac{5a}{4}+\dfrac{3b}{2}+2c=0\)

\(\Rightarrow f\left(1\right)=-f\left(\dfrac{1}{2}\right)\)

\(\Rightarrow f\left(1\right).f\left(\dfrac{1}{2}\right)=-\left[f\left(1\right)\right]^2\le0\)

\(\Rightarrow f\left(x\right)\)  luôn có ít nhất 1 nghiệm thuộc \(\left[\dfrac{1}{2};1\right]\) hay pt đã cho luôn có nghiệm

AH
Akai Haruma
Giáo viên
1 tháng 3 2022

Lời giải:
$f(x)=ax^2+bx+c$ liên tục trên $[0; \frac{1}{3}]$
$f(0)=c$

$f(\frac{1}{3})=\frac{1}{9}a+\frac{1}{3}b+c$
$\Rightarrow 18f(\frac{1}{3})=2a+6b+18c$

$\Rightarrow f(0)+18f(\frac{1}{3})=2a+6b+19c=0$

$\Rightarrow f(0)=-18f(\frac{1}{3})$

$\Rightarrow f(0).f(\frac{1}{3})=-18f(\frac{1}{3})^2\leq 0$

$\Rightarrow$ pt luôn có nghiệm trong $[0; \frac{1}{3}]$ (đpcm)

18 tháng 5 2019

nếu b > a+c
<=> \(b^2>\left(a+c\right)^2\\ \Leftrightarrow b^2-4ac>a^2+2ac+c^2-4ac\\ \Leftrightarrow\Delta>\left(a-c\right)^2\ge0\)

=> đpcm

1 tháng 7 2020

Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)

Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)

Hay \(\Delta>\left(a-c\right)^2\ge0\)

Vậy ta có điều phải chứng mình 

3 tháng 7 2020

b > a + c thì chưa đủ điều kiện chứng minh b^2 > (a + c)^2 mà?

27 tháng 12 2023

Đặt \(f\left(x\right)=ax^2+bx+c\).

\(f\left(0\right)=c;f\left(1\right)=a+b+c\)

Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).

17 tháng 3 2023

`a) 7x^2 - 2x + 3 = 0`

`(a = 7; b = -2; c = 3)`

`Δ = b^2 - 4ac = (-2)^2 - 4.7.3 = -80 < 0`

`=>` phương trình vô nghiệm

`b) 6x^2 + x + 5 = 0`

`(a = 6;b = 1;c = 5)`

`Δ = b^2 - 4ac = 1^2 - 4.6.5 = -119 < 0`

`=>` phương trình vô nghiệm

`c) 6x^2 + x - 5 = 0`

`(a = 6;b=1;c=-5)`

`Δ = b^2 - 4ac = 1^2 - 4.6.(-5) = 121 > 0`

`=>` phương trình có 2 nghiệm phân biệt

`x_1 = (-b + sqrt{Δ})/(2a) = (-1+ sqrt{121})/(2.6) = (-1+11)/12 = 10/12 = 5/6`

`x_2 = (-b - sqrt{Δ})/(2a) = (-1- sqrt{121})/(2.6) = (-1-11)/12 = -12/12 = -1`

Vậy phương trình có 1 nghiệm `x_1 = 5/6; x_2 = -1`

 

17 tháng 3 2023

ủa, mấy bài đó tương tự như ct mà:

\(7x^2-2x+3=0\) \(\left\{{}\begin{matrix}a=7\\b=-2\\c=3\end{matrix}\right.\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4.7.3=-80\)

Vì \(\Delta< 0\) \(\Rightarrow\) pt vô nghiệm