K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C M D E

các tam giác:+  \(\Delta ABC\)

\(\Delta ABD\)

\(\Delta BDM\) ; tam giác AEC ; tam giác EMC ; tam giác ABM ; tam giác ACM 

vẽ ko vuông cho lắm sorry !! 456467567687687980

24 tháng 1 2017

CO TAM GIAC ABC CAN TAI A

=>AB=AC( DN TAM GIÁC CÂN)

SUY RA GÓC ABC = GÓC ACB( DN TAM GIÁC CÂN)

CÓ GÓC ABC VÀ GÓC ABD LÀ 2 GÓC KỀ BÙ

SUY RA GÓC ABD+ GÓC ABC = 180 ĐỘ

CÓ GÓC ACB VÀ GÓC ACE LÀ 2 GÓC KỀ BÙ

SUY RA GÓC ACB + GÓC ACE = 180 ĐỘ

MÀ GÓC ABC = GÓC ACB( CMT)

SUY RA GÓC ABD+ GÓC ABC = GÓC ACB + ACE( =180 ĐỘ)

=> GÓC ABD= GÓC ACE

XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ:

AB=AC( CMT)

GÓC ABD = GỐC ACE ( GMT)

DB=EC( GT)

=> TAM GIÁC ADB = TAM GIÁC AEC( C-G-C)

=>AD=AE( 2 CẠNH TƯƠNG ỨNG)

=> TAM GIAC ADE CAN TAI A( DN TAM GIAC CAN)

b)CÓ TAM GIÁC ADE CÂN TẠI A( CMT)

=>GÓC D = GÓC E( ĐN TAM GIÁC CÂN)

CÓ M LÀ TRUNG ĐIỂM CỦA BC=>BM=CM

CO ME = MC+CE

MD=MB+BD

MA CE=BD

MB=MC

=>MD=ME

XÉT TAM GIÁC AMD VÀ TAM GIÁC AME CÓ:

AD= AE(CM CÂU a)

GÓC D=GÓC E(CMT)

MD=ME( CMT)

SUY RA TAM GIÁC AMD= TAM GIÁC AME( C-G-C)

=>GÓC ĐAM = GÓC EAM( 2 GÓC TƯƠNG ỨNG)

SUY RA AM LÀ TIA PHÂN GIÁC CỦA GÓC DAE

CÓ TAM GIÁC AMD = TAM GIÁC AME

SUY RA GÓC AMD = GÓC AME( 2 GÓC TƯƠNG ỨNG)

MÀ 2 GÓC NÀY LÀ 2 GÓC KỀ BÙ

SUY RA AMD+AME = 180 ĐỘ

CÓ GÓC AMD = GÓC AME = 180 ĐỘ :2 = 90 ĐỘ

SUY RA AM VUONG GOC VS DE 

CHO BN 2 CAU TRC LAM NAY

NHO K CHO MINH NHA

24 tháng 1 2017

CO TAM GIAC ADM = TAM GIAC ACE( CM O CAU A)

SUY RA GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)

XÉT TAM GIC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:

AB = AC ( CM Ở CÂU a)

GÓC DAB = GÓC EAC ( CMT)

=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)

=> BH = CK( 2 CẠNH TƯƠNG ỨNG)

d)KHI NÀO MÌNH NGHĨ XONG MÌNH SẼ NS CHO CẬU

2

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

a) Xét ΔABDΔABD và ΔACEΔACE có:

AB=ACAB=AC (do ΔABCΔABC cân đỉnh A)

ˆABD=ˆACEABD^=ACE^ (cùng +45o+45o=180^o)

BD=CEBD=CE (giả thiết)

⇒ΔABD=ΔACE⇒ΔABD=ΔACE (c.g.c)

⇒AD=AE⇒AD=AE (hai cạnh tương ứng)

⇒ΔADE⇒ΔADE cân đỉnh A

b) Ta có: BD+BM=CE+CM⇒DM=EMBD+BM=CE+CM⇒DM=EM

Xét ΔAMDΔAMD và ΔAMEΔAME có:

AD=AEAD=AE (cmt)

AMAM chung

DM=EMDM=EM (cmt)

⇒ΔAMD=ΔAME⇒ΔAMD=ΔAME (c.c.c)

⇒ˆMAD=ˆMAE⇒MAD^=MAE^ (hai góc tương ứng)

⇒AM⇒AM là phân giác ˆDAEDAE^ (đpcm)

Ta có ΔAMD=ΔAME⇒ˆAMD=ˆAMEΔAMD=ΔAME⇒AMD^=AME^

Mà ˆAMD+ˆAME=180oAMD^+AME^=180o

⇒ˆAMD=ˆAME=180o2=90o⇒AMD^=AME^=180o2=90o

⇒AM⊥DE⇒AM⊥DE (đpcm)

c) Xét ΔΔ vuông ABHABH và ΔΔ vuông ACKACK có:

AB=ACAB=AC (gt)

ˆBAH=ˆCAKBAH^=CAK^ (do ΔABD=ΔACEΔABD=ΔACE)

⇒ΔABH=ΔACK⇒ΔABH=ΔACK (ch-gn)

⇒BH=CK⇒BH=CK (hai cạnh tương ứng) (đpcm)

CHÚC BẠN HỌC GIỎI NHÉ THEO DÕI CHÉO NHA?

15 tháng 5 2016

1.gọi giao của BD và CE là O

ta có: OB=2/3 BD=> OB=2/3  x 9=6

ta có: OC=2/3 EC=> OC=2/3  x12=8

ta có:\(OC^2+OB^2=6^2+8^2=36+64=100\)

\(BC^2=10^2=100\)

=> tam giác OBC vuông tại O=> BD_|_CE tại O

1.gọi giao của BD và CE là O

ta có: OB=2/3 BD=> OB=2/3  x 9=6

ta có: OC=2/3 EC=> OC=2/3  x12=8

ta có:$OC^2+OB^2=6^2+8^2=36+64=100$OC2+OB2=62+82=36+64=100

$BC^2=10^2=100$BC2=102=100

=> tam giác OBC vuông tại O=> BD_|_CE tại O