K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

11 tháng 7 2020

hgggggg

6 tháng 7 2015

tách ra mình làm cho. để cả đống này k làm đc đâu

11 tháng 5 2016

ý a, áp dụng BĐT cô si có 

   a + b >= căn ab     dấu = xay ra a=b

b + c >= căn bc         dau = xay ra khi b=c

c+a >= căn ac           dau = xay ra khi a=c

công tung ve vao. rut gon ta dc điều phải chung minh

13 tháng 5 2019

Áp dụng bđt Bunhiacopxki được \(\left(a+b\right)^2\le\left(1+1\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)

\(\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\)

Chứng minh tương tự \(\hept{\begin{cases}\sqrt{b^2+c^2}\ge\frac{b+c}{\sqrt{2}}\\\sqrt{c^2+a^2}\ge\frac{c+a}{\sqrt{2}}\end{cases}}\)

Cộng 3 bđt lại được

\(VT\ge\frac{2\left(a+b+c\right)}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Dấu "=" <=> a= b = c = 1/3

15 tháng 6 2020

Giúp với,, TT

17 tháng 6 2020

Theo bất đẳng thức Cauchy-Schwarz, ta được:

\(\left(\Sigma_{cyc}\frac{a}{\sqrt{a+b}}\right)^2=\)\(\left(\Sigma_{cyc}\sqrt{a\left(5a+b+9c\right)}.\sqrt{\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}}\right)^2\)

\(\le\left(\Sigma_{cyc}a\left(5a+b+9c\right)\right)\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\)

\(=5\left(a+b+c\right)^2\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\)

Đến đây, ta cần chứng minh \(5\left(a+b+c\right)^2\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\le\frac{25}{16}\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\le\frac{5}{16}\)

Thật vậy, ta có: \(\frac{5}{16}-\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\)

\(\Leftrightarrow\frac{\sum_{cyc}ab(a+b)(a+9b)(a-3b)^2+243\sum_{cyc}a^3b^2c+835\sum_{cyc}a^3bc^2+232\sum_{cyc}a^4bc+1230a^2b^2c^2}{16(a+b)(b+c) (c+a)\prod_{cyc}(5a+b+9c)}\ge 0\) (đúng)

(Minh gõ bằng Latex, bạn chịu khó vô trang cá nhân của mình nhé, ngày 17/6 nha)

Đẳng thức xảy ra khi \(a=3b;c=0\)

đặt \(S=\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\)

\(=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+b^2}+\frac{c^3}{4a^2c^2+c^2}\ge\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4a^2b^2+4b^2c^2+4c^2a^2+a^2+b^2+c^2}\)

xét hiệu:

1-4(a2b2+b2c2+c2a2)-a2-b2-c2

=2ab+2bc+2ca-4(a2b2+b2c2+c2a2)

=2ab(1-2ab)+2bc(1-2bc)+2ca(1-2ca)

ta có:

\(2ab\le\frac{\left(a+b\right)^2}{2}\le\frac{1}{2};2bc\le\frac{\left(b+c\right)^2}{2}\le\frac{1}{2};2ca\le\frac{\left(c+a\right)^2}{2}\le\frac{1}{2}\)

\(\Rightarrow2ab\left(1-2ab\right);2bc\left(1-2bc\right);2ca\left(1-2ca\right)\ge0\)

\(\Rightarrow1\ge4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2\)

\(\Rightarrow\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)

\(\Rightarrow\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)

=>đpcm

dấu"=" xảy ra khi 1 số=1;2 số còn lại =0