Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4b\sqrt{c}-c\sqrt{a}=\sqrt{c}\left(4b-\sqrt{ac}\right)>0\)( do \(1< a,b,c< 2\))
Tương tự => Các MS dương
\(VT=\frac{ba}{4b\sqrt{ac}-ca}+\frac{cb}{4c\sqrt{ba}-ab}+\frac{ac}{4a\sqrt{bc}-bc}\)
Áp dụng BĐT cosi schawr ta có
\(VT\ge\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}{4b\sqrt{ac}+4c\sqrt{ab}+4a\sqrt{bc}-ab-bc-ac}\)
Áp dụng cosi ta có \(2b\sqrt{ac}=2\sqrt{ab}.\sqrt{ac}\le ab+ac\);\(2c\sqrt{ab}\le ac+bc\);\(2a\sqrt{bc}\le ab+ac\)
=> \(VT\ge\frac{\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)^2}{ab+bc+ac+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}}=\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}=1\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c
Bài toán ghép cơ học không có gì mới
Ta chứng minh 2 bổ đề:
\(\frac{1}{4a^2+b^2+c^2}+\frac{1}{4b^2+c^2+a^2}+\frac{1}{4c^2+a^2+b^2}\le\frac{9}{2\left(a+b+c\right)^2}\left(1\right)\)
\(\frac{9}{2\left(a+b+c\right)^2}\le\frac{1}{2\left(a^2+b^2+c^2\right)}+\frac{1}{ab+bc+ca}\left(2\right)\)
Bất đẳng thức ( 2 ) tương đương với:
\(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2}+\frac{2\left(a+b+c\right)^2}{ab+bc+ca}\ge9\)
\(\Leftrightarrow\frac{2\left(ab+bc+ca\right)}{a^2+b^2+c^2}+1+\frac{2\left(a^2+b^2+c^2\right)}{ab+bc+ca}+4\ge9\)
\(\Leftrightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}\ge2\)( Luôn đúng theo BĐT AM - GM )
Bất đẳng thức ( 1 ) tương đương với:
\(\left(a+b+c\right)^2\left(\frac{1}{4a^2+b^2+c^2}+\frac{1}{4b^2+c^2+a^2}+\frac{1}{4c^2+a^2+b^2}\right)\le\frac{9}{2}\)
Sử dụng Titu's Lemma ta dễ có:
\(\frac{\left(a+b+c\right)^2}{4a^2+b^2+c^2}=\frac{\left(a+b+c\right)^2}{2a^2+\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{a^2}{2a^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)
Một cách tương tự khi đó:
\(LHS\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\Sigma\left(\frac{b^2}{a^2+b^2}+\frac{a^2}{a^2+b^2}\right)=\frac{3}{2}+3=\frac{9}{2}\left(đpcm\right)\)
Vậy ta có đpcm
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Thôi giải lại câu 1:v (ý tưởng dồn biến là quá trâu bò! Bên AoPS em mới phát hiện ra có một cách bằng Cauchy-Schwarz quá hay!)
\(BĐT\Leftrightarrow\Sigma_{cyc}\frac{\left(a+b+c\right)^2}{2a^2+\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{9}{2}\)(*)
BĐT này đúng theo Cauchy-Schwarz: \(VT_{\text{(*)}}\le\Sigma_{cyc}\left(\frac{a^2}{2a^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)=\frac{9}{2}\)
Ta có đpcm.
Equality holds when a = b = c = 1 (Đẳng thức xảy ra khi a = b =c = 1)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
#: Lỡ hẹn với Mincopxki rồi xài cách khác vậy :(
Đặt \(a=\frac{2x}{3};b=\frac{2y}{3};c=\frac{2z}{3}\)
Khi đó ta có \(xy+yz+xz\ge3\) và cần chứng minh
\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\ge\frac{\sqrt{181}}{5}\)
Áp dụng BĐT Cauchy-Schwarz ta có:\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\)
\(=\frac{15}{\sqrt{181}}Σ_{cyc}\sqrt{\left(\frac{4}{9}+\frac{9}{25}\right)\left(\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}\right)}\ge\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\)
Giờ chỉ cần chứng minh \(\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\ge\frac{\sqrt{181}}{5}\)
\(\Leftrightarrow20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)\ge\frac{543}{5}\)
Đặt tiếp \(x+y+z=3u;xy+yz+xz=3v^2\left(v>0\right)\)
Vì thế \(u\ge v\ge1\)và áp dụng BĐT C-S dạng Engel ta có:
\(20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)-\frac{543}{5}\)
\(\ge20\left(x+y+z\right)+81\cdot\frac{\left(1+1+1\right)^2}{Σ_{cyc}\left(2x+3\right)}-\frac{543}{5}=60u+\frac{729}{6u+9}-\frac{543}{5}\)
\(=3\left(20u+\frac{81}{2u+3}-\frac{181}{5}\right)=\frac{6\left(u-1\right)\left(100u+69\right)}{5\left(2u+3\right)}\ge0\)
Điều này đúng tức là ta có ĐPCM
đặt \(S=\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\)
\(=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+b^2}+\frac{c^3}{4a^2c^2+c^2}\ge\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4a^2b^2+4b^2c^2+4c^2a^2+a^2+b^2+c^2}\)
xét hiệu:
1-4(a2b2+b2c2+c2a2)-a2-b2-c2
=2ab+2bc+2ca-4(a2b2+b2c2+c2a2)
=2ab(1-2ab)+2bc(1-2bc)+2ca(1-2ca)
ta có:
\(2ab\le\frac{\left(a+b\right)^2}{2}\le\frac{1}{2};2bc\le\frac{\left(b+c\right)^2}{2}\le\frac{1}{2};2ca\le\frac{\left(c+a\right)^2}{2}\le\frac{1}{2}\)
\(\Rightarrow2ab\left(1-2ab\right);2bc\left(1-2bc\right);2ca\left(1-2ca\right)\ge0\)
\(\Rightarrow1\ge4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2\)
\(\Rightarrow\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
\(\Rightarrow\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
=>đpcm
dấu"=" xảy ra khi 1 số=1;2 số còn lại =0