K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

A B C H E D

Dễ dàng chứng minh được:  \(HEAD\)là hình chữ nhật

\(\Rightarrow\)\(HE=AD=12\)

          \(HD=EA=18\)

Áp dụng hệ thức lượng ta có:

       \(HD^2=AD.DC\)

\(\Rightarrow\)\(DC=\frac{HD^2}{AD}\)

\(\Rightarrow\)\(DC=\frac{18^2}{12}=27\)

\(\Rightarrow\)\(AC=AD+DC=12+27=39\)

            \(HE^2=BE.AE\)

\(\Rightarrow\)\(BE=\frac{HE^2}{AE}\)

\(\Rightarrow\)\(BE=\frac{12^2}{18}=8\)

\(\Rightarrow\)\(AB=BE+EA=8+18=26\)

22 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=9^2+12^2=15^2\)

=>BC=15(cm)

Xét ΔABC vuông tại A có 

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{C}\simeq37^0\)

=>\(\widehat{B}=90^0-\widehat{C}=53^0\)

b: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

c: ΔABC vuông tại A có AK là đường trung tuyến

nên KA=KB=KC

KA=KC

=>\(\widehat{KAC}=\widehat{KCA}\)

\(\widehat{AFE}+\widehat{KAC}\)

\(=\widehat{AHE}+\widehat{KCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AK vuông góc EF

22 tháng 10 2023

BC=15
góc A=90 độ  A B C

1 tháng 11 2017

Xét hai tam giác vuông ABH và CAH có:

∠ ABH = ∠ CAH (cùng phụ với góc  ∠ BAH)

Do đó △ ABH đồng dạng  △ CAH (g.g).

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ A H 2  = BH. CH = 4.9 = 36 ⇒ AH = 6(cm)

Mặt khác, HD ⊥ AB và HE ⊥ AC nên ADHE là hình chữ nhật.

Suy ra: DE = AH = 6 (cm)

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)