K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

A B C H E D

Dễ dàng chứng minh được:  \(HEAD\)là hình chữ nhật

\(\Rightarrow\)\(HE=AD=12\)

          \(HD=EA=18\)

Áp dụng hệ thức lượng ta có:

       \(HD^2=AD.DC\)

\(\Rightarrow\)\(DC=\frac{HD^2}{AD}\)

\(\Rightarrow\)\(DC=\frac{18^2}{12}=27\)

\(\Rightarrow\)\(AC=AD+DC=12+27=39\)

            \(HE^2=BE.AE\)

\(\Rightarrow\)\(BE=\frac{HE^2}{AE}\)

\(\Rightarrow\)\(BE=\frac{12^2}{18}=8\)

\(\Rightarrow\)\(AB=BE+EA=8+18=26\)

b: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=EF(1)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=BH\cdot CH\left(2\right)\)

Từ (1) và (2) suy ra \(FE^2=BH\cdot CH\)

27 tháng 10 2016

Hỏi đáp Toán

Áp dụng Py_ta_go => BC = 15 cm. Áp dụng hệ thức ah=bc => AH = 7,2cm
=> AD = AH2/AB = 5,76cm.

CMTT => AE = 4,32 cm

Có AE = \(\frac{3}{4}\)AD ↔ 4AE = 3AD ↔ 12AE = 9AD.
Mà AB=9cm, AC=12cm
=> AC.AE=AB.AD

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=7,2(cm)