K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

mk mới lớp 6 thui bạn ạ

17 tháng 2 2017

////????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????không biết

1 tháng 3 2016

Nếu a = 4 => b = 3 => a+b = 7

=> a>=4 , ab>= 12 thì a+b >= 7

21 tháng 7 2022

45854

 

212122512122

1

1

1

1123

4564

454

3546434

 

29 tháng 7 2015

A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50)  < 1/4 ;   (1/51 + 1/52+...+1/59+1/60) < 1/5

Mà A = (1/3 + 1/4 + 1/5) = 47/60 > 7/12 

Vậy A >7/12

10 tháng 10 2023

Chỉnh đề:

Ta có:

\(A=2+2^2+2^3+2^4+...2^{12}\)

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{10}+2^{11}+2^{12}\right)\)

\(A=14+2^3.\left(2+2^2+2^3\right)+...+2^9.\left(2+2^2+2^3\right)\)

\(A=14+2^3.14+...+2^9.14\)

\(A=14.\left(1+2^3+...+2^9\right)\)

Vì \(14⋮7\) nên \(14.\left(1+2^3+...2^9\right)⋮7\)

Vậy \(A⋮7\)

 

10 tháng 10 2023

giỏi dữ ta

witch roses 14/06/2015 lúc 10:28

ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100

=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)

=7/12+(1/5.6+...+1/99.100)>7/12(1)

A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100

=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)

=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100)    ( cộng thêm cả 2 vế với 1/2+1/4+..+1/100)

=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)

=1/51+1/52+..+1/100

dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm

A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)

<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6

=>A<5/6(2)

từ 1 và 2 =>đpcm

5 tháng 8 2016

A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) > 1 / (1*2) + 1 / (3*4) = 1 / 2 + 1 / 12 = 7 / 12  
A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100) = 
(1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 
1 - 1 / 2 + 1 / 3 = 5 / 6  
 => 7 / 12 < A < 5 / 6

28 tháng 8 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

Có: \(\frac{7}{12}=0,58\left(3\right);\frac{99}{100}=0,99;\frac{5}{6}=0,8\left(3\right)\)

Và:  \(0,58< 0,99>0,8\left(3\right)\) ( đề sai bạn ơi )

27 tháng 7 2018

Ta có :

\(\dfrac{1}{101}>\dfrac{1}{150}\)

\(\dfrac{1}{102}>\dfrac{1}{150}\)

\(.............\)

\(\dfrac{1}{150}=\dfrac{1}{150}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)( 50 số hạng ) \(=\dfrac{1}{3}\)

Ta có :

\(\dfrac{1}{151}>\dfrac{1}{200}\)

\(\dfrac{1}{152}>\dfrac{1}{200}\)

\(..............\)

\(\dfrac{1}{200}=\dfrac{1}{200}\)

\(\Rightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)( có 50 số hạng ) \(=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Rightarrow A>\dfrac{7}{12}\)

잘 공부하십시오 !