K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số dãy ghế ban đầu là: x ( 0 < x; x thuộc Z)

Mỗi ghế có y người (0 < y; y thuộc Z)

Vì có 80 người nên ta có x.y = 80 (1)

Nếu bớt 2 ghế thì còn x - 2 ghế. Khi đó mỗi ghế phải thêm 2 người nên có y + 2 người

Ta có PT: (x - 2)(y + 2) = 80 (2)

Giải hệ gồm PT (1) và (2) ta được x = 10; y = 8

8 tháng 5 2021
Số hàng ghế ban đầu trong phòng là 10 hàng ghế

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có 240xghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> (240x+1)(x+3)=315⇔240+720x+x+3=315

⇔x−72+720x=0⇔x2−72x+720x=0⇔x2−72x+720=0

Δ′=(−36)2−720=576

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế. 

9 tháng 6 2015

Gọi số hàng ghế lúc đầu là x (hàng) ĐK x > 0 và x thuộc N* 
Số ghế trong mỗi hàng lúc đầu là 360/x (ghế) 
Số hàng sau khi thêm là x+1 
Số ghế trong mỗi hàng sau khi thêm là 360/x + 1 
Tổng số chỗ ngồi sau thi thêm là 400 nên ta có phương trình: 
(x+1).(360/x + 1) = 400 
<=> x^2 - 39x + 360 = 0 
∆= 81 nên x1=24; x2 = 15 cả hai giá trị này đều thỏa mãn ĐK. 
Nếu số hàng ghế lúc đầu là 24 hàng thì số ghế trong mỗi hàng là 360:24 = 15 ghế 
Nếu số hàng ghế lúc đầu là 15 hàng thì số ghế trong mỗi hàng là 360:15 = 24 ghế 

4 tháng 3 2020
Gọi số dãy ghế lúc đầu là x (hàng) ĐK x > 0 và x thuộc N* 
Số ghế trong mỗi dãy lúc đầu là 360/x (ghế) 
Số dãy sau khi thêm là x+1 
Số ghế trong mỗi dãy sau khi thêm là 360/x + 1 
Tổng số chỗ ngồi sau thi thêm là 400 nên ta có phương trình: 
(x+1).(360/x + 1) = 400 
<=> x^2 - 39x + 360 = 0 
∆= 81 nên x1=24; x2 = 15 cả hai giá trị này đều thỏa mãn ĐK. 
Nếu số dãy ghế lúc đầu là 24 hàng thì số ghế trong mỗi dãy là 360:24 = 15 ghế 
Nếu số dãy ghế lúc đầu là 15 hàng thì số ghế trong mỗi dãy là 360:15 = 24 ghế 

Bài này hơi khó nên mik ko làm được

Thông cảm nha !

30 tháng 12 2018

gọi số hàng ghế ban đầu là x ( hàng )( đk x>0)

\(\Rightarrow\)số hàng ghế sau khi thêm một hàng là x+1 ( hàng)

số ghế trên một hàng ban đầu là \(\frac{300}{x}\)(ghế) 

số ghế trên một hàng sau khi thêm hai ghế và một hàng là \(\frac{357}{x+1}\)(ghế)

ta có phương trình : \(\frac{357}{x+1}\)=\(\frac{300}{x}\)+2

\(\Rightarrow\)357x =300x+300 +2x\(^2\)+2

\(\Leftrightarrow\)-2x\(^2\)+57x-302=0

\(\Leftrightarrow\)2x\(^2\)-57x+302=0

giải phương trình bậc hai 

đối chiếu điều kiện 

kết luận

2 tháng 6 2015

Gọi số dãy ghế trong phòng họp là x (dãy) (x thuộc N*, x > 3)
Vì trong phòng có 360 người nên mỗi dãy có số người là 360:x
Nếu bớt đi 3 dãy và thêm vào mooic dãy 4 người thì số người vẫn không thay đổi nên ta có phương trình :
                         (x -3)(360:x +4) = 360 
                  <=>  360 + 4x -1080:x -12 = 360
                  <=>  4x^2-12x -1080 =0
                  <=>   x^2 - 3 x -270 =0
                  <=>   x^2 - 18x +15x -270 =0
                  <=>   (x -18)(x +15) = 0
                  <=>   x= 18 (thỏa mãn) hoặc x=-15 (loại)
 Vậy số dãy trong phòng họp là 18 dãy
 ĐÚNG HỘ NHA!!!!

21 tháng 2 2021

Gọi số dãy là x, số ghế là y (x;y thuộc N*)
Vì tổng số ghế là 320 nên:
xy = 320
=> y = 320/x (1)
Nếu số dãy ghế tăng tăng thêm 1 và số ghế mỗi dãy tăng thêm 2 thì trong phòng có 374 ghế nên ta có:
(x+1) (y+2) - xy = 374 - 320
=> 2x + y + 2 + xy -xy = 54
=>2x + y = 52 (2)
Thay (1) vào (2) ta có:
2x + 320/x =52
<=> 2x2x2 +320 = 52x
<=> x2x2 + 160 = 26x
<=> x2x2 - 26x +160 =0
<=> x2x2 - 10x - 16x + 160 = 0
<=> (x-16) * (x-10) = 0
<=> x = 16 hoặc x=10

=> y= 320/16 = 20 hoặc y = 320/10 =32
Vậy
TH1: Phòng họp có 16 dãy, mỗi dãy 20 chỗ
TH2: Phòng họp có 10 dãy, mỗi dãy 32 chỗ

21 tháng 2 2021

3 con giáp là con trâu

16 tháng 1 2019

bài mẫu nè:

gọi số dãy ghế là x, số ghê là y 
theo đb ta có hpt 
(x-2)(y+2)=288 
xy=288 
giải pt tìm đk x=18; y=16 

27 tháng 5 2021

sai r bạn ak phải ra là 2 TH là 12(tm) và -16( k tm)

 

30 tháng 4 2021

Gọi số dãy ghế trong phòng họp lúc đầu là x (dãy)

thì số ghế của 1 dãy  trong phòng họp lúc đầu là \(\dfrac{240}{x}\) ( ghế)

số dãy ghế trong phòng họp lúc sau là x+20( dãy)

số ghế của 1 dãy  trong phòng họp lúc là \(\dfrac{240}{x}\)-1( ghế)

ĐK : x∈N*

ĐK:x∈N*

theo đề bài ta có

\(\left(x+20\right)\left(\dfrac{240}{x}-1\right)=240\)

⇔​​​\(-x^2-20x+4800=0\)

\(\Delta'=\left(-10\right)^2-\left(-1\right)\cdot4800=4900\)

\(\sqrt{\Delta'}=\sqrt{4900}=70>0\)

⇒Pt có 2 nghiệm phân biệt

\(x_1=\dfrac{10-70}{-1}=60\left(N\right)\)

\(x_2=\dfrac{10+70}{-1}=-80\left(L\right)\)

Vậy ......

 

30 tháng 4 2021

Thanks bạn 

21 tháng 6 2019

Gọi x là số hàng ghế ban đầu phòng có (x> 0 , x tính bằng hàng )
Khi đó mỗi hàng có 80/x chiếc
số hàng ghế phòng có sau khi bớt là x-2( hàng )
sau khi bớt mỗi hàng có 80/x-2 chiếc
Mà sau khi bớt , mỗi hàng còn lại thêm 2 ghế nên ta có phương trình :
80/x−2−2=80/x⇔80x/x(x−2)−2x(x−2)/x(x−2)=80(x−2)/x(x−2)
⇒80x−2x^2+4x=80x−160
⇔2x^2−4x−160=0
Giải phương trình ta được : x1=10 (TM) ; x2= -8 (KTM)
Vậy ban đầu phòng có 10 hàng ghế

18 tháng 5 2016

Theo đề thì ta chỉ cần tính tổng của 12 + 13 + 14 + 15 ..... + 29 + 30 thôi.

Ta thấy 30 + 12 = 42 ; 13 + 29 = 42 ..... 

Số cặp như vậy từ 12 đến 30 là:

(30 - 12) : 2 = 9 ( cặp )

Số ghế ngồi là:

 42 x 9 = 378 ( ghế )

Vậy phòng học đó không có đủ ghế cho 390 người ngồi 

Theo đề thì ta chỉ cần tính tổng của 12 + 13 + 14 + 15 ..... + 29 + 30 thôi.

Ta thấy 30 + 12 = 42 ; 13 + 29 = 42 ..... 

Số cặp như vậy từ 12 đến 30 là:

(30 - 12) : 2 = 9 ( cặp )

Số ghế ngồi là:

 42 x 9 = 378 ( ghế )

Vậy phòng học đó không có đủ ghế cho 390 người ngồi