K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

A B C H 20 5 12 6 I

Hình như yêu cầu của đề bài sai.

12 tháng 7 2016

uk sai thật

NV
10 tháng 1 2022

Pitago: \(BC^2=AB^2+AC^2\Rightarrow BC^2-\left(AB^2+AC^2\right)=0\)

Gọi các tiếp điểm với AB và AC là E và F

Do đường tròn (I) nội tiếp tam giác, theo t/c hai tiếp tuyến cắt nhau:

\(BD=BE\) ; \(AE=AF\) ; \(CD=CF\)

Mà \(BD+CD=BC;AE+BE=AB;AF+CF=AC\)

\(\Rightarrow BC+AB-AC=BD+CD+AB+BE-AF-CF=BD+BE=2BD\)

\(\Rightarrow BD=\dfrac{BC+AB-AC}{2}\)

Tương tự: \(BC+AC-AB=2DC\Rightarrow DC=\dfrac{BC+AC-AB}{2}\)

\(\Rightarrow BD.DC=\dfrac{1}{4}\left(BC+AB-AC\right)\left(BC+AC-AB\right)=\dfrac{1}{4}\left[BC^2-\left(AB-AC\right)^2\right]\)

\(=\dfrac{1}{4}\left(BC^2-\left(AB^2+AC^2\right)+2AB.AC\right)=\dfrac{1}{2}AB.AC=S_{ABC}\)

NV
10 tháng 1 2022

undefined

15 tháng 6 2016

a)\(\Delta AEC\)có góc ngoài là AEB=góc KAC+ góc ACE

Mà góc BAE = góc KAH; góc ACB = góc BAH => góc AEB = góc BAE

\(\Rightarrow\Delta ABE\)cân ở B và có BJ là phân giác

=>BJ vuông góc với AE

Tương tự có CJ vuông góc AD => AI vuông góc JK (I là trực tâm \(\Delta AJK\))

b)Dùng tính chất các phân giác ta có: góc BAI= góc \(\frac{BAC}{2}=\)\(\frac{\text{(góc B+góc C)}}{2}\)

=>Góc EAI=\(\frac{\text{(góc B+góc C)}}{2}\text{-góc EAI}\)\(\frac{\text{(góc B+góc C)}}{2}\text{- góc C}=\frac{\text{góc B}}{2}\)

Nhưng ta lại có góc EAI=JAI=EKJ (Cùng phụ góc AJK)

=>Góc EKJ= góc JBC(= góc B/2)

Lại có góc EKJ+góc JKC=180 độ (kề bù)

=>góc JBC+góc JKC=180 độ nên tứ giác BJKC nội típ

26 tháng 11 2023

Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AFHE là tứ giác nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

=>IA=IH=IE=IF

Xét tứ giác BFEC có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

=>BFEC là tứ giác nội tiếp đường tròn đường kính BC

=>M là trung điểm của BC

=>MB=MC=ME=MF

Gọi O là giao điểm của AH với BC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại O

ΔBHO vuông tại O

=>\(\widehat{OHB}+\widehat{OBH}=90^0\)

mà \(\widehat{OBH}+\widehat{OCE}=90^0\)(ΔBEC vuông tại E)

nên \(\widehat{OHB}=\widehat{OCE}\)

mà \(\widehat{OHB}=\widehat{IHE}\)(hai góc đối đỉnh)

nên \(\widehat{IHE}=\widehat{OCE}\)

IH=IE

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{OCE}\)

nên \(\widehat{IEH}=\widehat{OCE}=\widehat{ECB}\)

ME=MB

=>ΔMEB cân tại M

=>\(\widehat{MEB}=\widehat{MBE}\)

=>\(\widehat{MEB}=\widehat{EBC}\)

\(\widehat{IEM}=\widehat{IEH}+\widehat{MEH}\)

\(=\widehat{EBC}+\widehat{ECB}\)

\(=90^0\)

=>ME là tiếp tuyến của (I)