*Mọi người ơi, giúp mình bài này với*
Cho tam giác vuông ABC ( A=90 độ) có AB = 9cm, AC = 12cm. Tia phân giác của góc A cắt BC tại D. Từ D kẻ DE⊥AC (E ∈ AC).
a) Tính độ dài các đoạn thẳng BD, CE và DE
b) Tính diện tích các tam giác ABD và ACD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{BC}{21}=\dfrac{15}{21}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{9}=\dfrac{5}{7}\\\dfrac{CD}{12}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{45}{7}cm\\CD=\dfrac{60}{7}cm\end{matrix}\right.\)
Vậy: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=15/7
=>BD=45/7cm; CD=60/7cm
Xét ΔCAB có DE//AB
nên DE/AB=CD/CB
=>DE/9=60/7:15=4/7
=>DE=36/7cm
b: \(S_{ACD}=\dfrac{1}{2}\cdot DE\cdot AC=\dfrac{1}{2}\cdot\dfrac{36}{7}\cdot12=\dfrac{216}{7}\left(cm^2\right)\)
\(S_{ACB}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)
\(S_{ABD}=54-\dfrac{216}{7}=\dfrac{162}{7}\left(cm^2\right)\)
Bài 2:
a:
BC=20cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/12=CD/16
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
b: Xét ΔABC có DE//AB
nên DE/AB=CD/BC
=>DE/12=4/7
hay DE=48/7(cm)
a. Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{9^2+12^2}=\sqrt{225}=15cm\)
Áp dụng t/c tia phân giác góc A, ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{9}{12}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{15}{7}\)
\(\Rightarrow CD=\dfrac{15}{7}.4=\dfrac{60}{7}cm\)
\(\Rightarrow BD=\dfrac{15}{7}.3=\dfrac{45}{7}cm\)
Xét tam giác ABD và tam giác ADE có:
\(\widehat{E}=\widehat{D}=90^0\)
AD: cạnh chung
\(\widehat{BAD}=\widehat{DAE}\) ( gt )
=> tam giác ABD = tam giác ADE ( c.g.c )
=> BD = ED = \(\dfrac{45}{7}cm\)
b. Xét tam giác ABD và tam giác ABC, có:
\(\widehat{BAC}=\widehat{BDA}=90^0\)
\(\widehat{B}:chung\)
Vậy tam giác ABD đồng dạng tam giác ABC ( g.g )
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{AD}{AC}\)
\(\Leftrightarrow\dfrac{45}{\dfrac{7}{9}}=\dfrac{AD}{12}\)
\(\Leftrightarrow\dfrac{5}{7}=\dfrac{AD}{12}\)
\(\Leftrightarrow7AD=60\Leftrightarrow AD=\dfrac{60}{7}cm\)
\(S_{ABD}=\dfrac{1}{2}.BD.AD=\dfrac{1}{2}.\dfrac{45}{7}.\dfrac{60}{7}\simeq27,55cm^2\)
\(S_{ACD}=\dfrac{1}{2}.CD.AD=\dfrac{1}{2}.\dfrac{60}{7}.\dfrac{60}{7}\simeq36,73cm^2\)