K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

Tìm trước khi hỏi : 

Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học

6 tháng 6 2017

Witch Rose

Vì a,b,ca,b,c không âm và a+b+c=1a+b+c=1 nên 2t=5c+432≤t=5c+4≤3

Ta có:a,b025ab+20(a+b)+1620(a+b)+16a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16

(5a+4)(5b+4)4(5a+5b+4)⇔(5a+4)(5b+4)≥4(5a+5b+4)

(5a+4+5b+4)2(2+5a+5b+4)2⇔(5a+4+5b+4)2≥(2+5a+5b+4)2

5a+4+5b+42+95c=2+13

Ta có : \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1\end{matrix}\right.\Rightarrow a\le1\Leftrightarrow a^2\le a\)

\(VT=\sqrt{4a+4.1+1}+\sqrt{4b+4.1+1}+\sqrt{4c+4.1+1}\ge\sqrt{4a^2+4a+1}+\sqrt{4b^2+4b+1}+\sqrt{4c^2+4c+1}\)

\(=2a+1+2b+1+2c+1=7\) .

Vậy đẳng thức được chứng minh . Dấu \("="\Leftrightarrow a=1;b=0;c=0\) và hoán vị

À sorry mình nhầm .

\(VT=\sum\sqrt{4a+4+1}\ge\sum\sqrt{a^2+4a+4}=a+2+b+2+c+2=7\)

25 tháng 1 2019

Vì a, b, c không âm và có tổng bằng 1 nên  0 ≤ a , b , c ≤ 1 ⇒ a ( 1 − a ) ≥ 0 b ( 1 − b ) ≥ 0 c ( 1 − c ) ≥ 0 ⇒ a ≥ a 2 b ≥ b 2 c ≥ c 2 ⇒ 5 a + 4 ≥ a 2 + 4 a + 4 = ( a + 2 ) 2 = a + 2 T ư ơ n g   t ự :   5 b + 4 ≥ b + 2 ; 5 c + 4 ≥ c + 2 ⇒ 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ ( a + b + c ) + 6 = 7   ( đ p c m )

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

8 tháng 7 2019

Ta có: \(\hept{\begin{cases}a;b;c\ge0\\a+b+c=1\end{cases}}\Rightarrow0\le a;b;c\le1\Rightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\)

\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)

\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)

\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=a+2+b+2+c+2=7\)

\("="\Leftrightarrow a;b;c\) là hoán vị của 0;0;1