So sánh A và B biết :
A = 2005 x 2005 + 1 / 2005 x 2005 x 2005 - 1
B = 2005 + 1 / 2005 x 2005 - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2004}{2005}=1-\frac{1}{2005}\);\(\frac{2005}{2006}=1-\frac{1}{2006}\)
Vì \(\frac{1}{2005}>\frac{1}{2006}\)=>\(1-\frac{1}{2005}< 1-\frac{1}{2006}\)=>\(\frac{2004}{2005}< \frac{2005}{2006}\)
Xét A trước ta có
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)ta có \(2005.A=\frac{2005.\left(2005^{2005}+1\right)}{2005^{2006}+1}\)
\(2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)\(2005A=\frac{2005^{2006}+1+2004}{2005^{2006}+1}\)
\(2005.A=1+\frac{2004}{2005^{2006}+1}\)
Xét B ta có
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)ta có \(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}\)
\(2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)\(2005B=\frac{2005^{2005}+1+2004}{2005^{2005}+1}\)
\(2005B=1+\frac{2004}{2005^{2005}+1}\)
ta có vì 2005A<2005B
từ đó suy ra A<B
nhớ **** đó
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}\)
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}\)
Vì \(\frac{2004}{2005^{2006}+1}
Ta có VẾ A
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005\cdot\left(2005^{2005}+1\right)}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005^{2006}+1+2004}{2005^{2006}+1}\)
\(2005\cdot A=1+\frac{2004}{2005^{2006}+1}\)
Ta lại có Vế B :
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005\cdot\left(2005^{2004}+1\right)}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005^{2005}+1+2004}{2005^{2005}+1}\)
\(2005\cdot B=1+\frac{2004}{2005^{2005}+1}\)
Nhìn vào trên , suy ra A < B .
\(2005A=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2014}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2014}{2005^{2005}+1}=1+\frac{2014}{2005^{2005}+1}\)Ta thấy \(2005^{2006}+1>2005^{2005}+1\Rightarrow\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
\(\Rightarrow A< B\)
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\) và \(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
So sánh A và B
\(2005A=\frac{2005^{2005}+1}{2005^{2006}+1}=\frac{2005.\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}}\) \(=\frac{2005^{2006}+2014+1}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005B=\frac{2005^{2004}+1}{2005^{2005}+1}=\frac{2005.\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}\)\(=\frac{2005^{2005}+2004+1}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)
Vì \(2005^{2006}+1>2005^{2005}+1\)
Nên \(1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
Hay A < B
Vậy A < B
sửa chỗ \(\frac{2005^{2006}+2014+1}{2005^{2006}+1}\) thành \(\frac{2005^{2006}+2004+1}{2005^{2006}+1}\)nhé
A = 2005 x 2005 + 1 / 2005 x 2005 x 2005 - 1
A = 2005 x 2005 + 1 / 2005 x 2005 x 2005 - 1
A = \(\frac{2005+1}{2005x2005-1}\)
B = \(\frac{2005+1}{2005x2005-1}\)
=> A = B