K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

số đó ko phải

22 tháng 8 2018

Hỏi gì nhìu thế !!

1.

a) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3 vì trong 3 số đó luôn có 1 số chia hết cho 3 nên 1990 không thể là tích của 3 số tự nhiên liên tiếp vì:
1 + 9 + 9 + 0 = 19     ( không chia hết cho 3 )

b) 3 số tự nhiên liên tiếp thì bao giờ cũng có 1 số chẵn vì vậy mà tích của chúng là 1 số chẵn mà 1995 là 1 số lẻ do vậy không phải là tích của 3 số tự nhiên liên tiếp. 

c) Tổng của 3 số tự nhiên liên tiếp thì sẽ bằng 3 lần số ở giữa do đó số này phải chia hết cho 3.

Mà 1993 = 1 + 9 + 9 + 3 = 22 ( Không chia hết cho 3 )

Nên số 1993 không là tổng của 3 số tự nhiên liên tiếp.

12 tháng 9 2023

nguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

10 tháng 6 2016

Trong tích 3 số tự nhiên liên tiếp tồn tại ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3.

1990 chia 3 dư 1, 1995 chia 2 dư 1, 1993 chia 2 dư 1.

Vậy 1990; 1995; 1993 không thể là tích 3 số tự nhiên liên tiếp.

2 tháng 7 2021

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

30 tháng 11 2019

2. Gọi 4 số TN liên tiếp lần lượt là :a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ( a thuộc N)

Ta có : a + a + 1 + a + 2 + a + 3 + a + 4 = a + a + a + a + 1 + 2 +3 + 4 = 4a + 6

Vì 4a chia hết cho 2 ; 6 chia hết cho 2 nên 4a + 6 chia hết cho 2

Vì 4a chia hết cho 4 ; 6 không chia hết cho 4 nên 4a + 6 không chia hết cho 4

Do đó tổng của 4 số TN liên tiếp chia hết cho 2 nhưng không chia hết cho 22

Do đó tổng của 4 số TN liên tiếp không là số chính Phương

Học tốt 🐱

10 tháng 8 2014

a)

Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)

Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.

b)

350 +1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2 (theo câu a)

14 tháng 9 2015

TÍch của 2 stn liên tiếp ko có dạng 3k+1 nên sai    

16 tháng 2 2016

lớp mấy

16 tháng 2 2016

Đặt tích 2 số tự nhiên liên tiếp là \(a\left(a+1\right)=a^2+a\)

Ta sẽ xét xem tích 2 số tự nhiên liên tiếp chia cho 3 dư bao nhiêu.

TH1: a chia hết cho 3

\(\Rightarrow\)a2 chia hết cho 3 và a cũng chia hết cho 3

\(\Rightarrow a^2+a\) chia hết cho 3

\(\Rightarrow a\left(a+1\right)\) chia hết cho 3

TH2: a chia 3 dư 1 -> a có dạng 3k+1

\(\Rightarrow a^2=\left(3k+1\right)^2=\left(3k+1\right)\left(3k+1\right)=\left(3k+1\right)3k+\left(3k+1\right).1=9k^2+3k+3k+1\)\(=3.\left(3k^2+k+k\right)+1\)

\(\Rightarrow a^2+a=3.\left(3k^2+k+k\right)+1+3k+1=3.\left(3k^2+k+k+k\right)+1+1=3.\left(3k^2+3k\right)+2\)

Thấy \(3.\left(3k^2+3k\right)+2\) chia 3 dư 2

\(\Rightarrow a^2+a\) chia 3 dư 2

\(\Rightarrow a\left(a+1\right)\) chia 3 dư 2

TH3: a chia 3 dư 2

\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k+2\right)\left(3k+2\right)=\left(3k+2\right).3k+\left(3k+2\right).2=9k^2+6k+6k+4\)                                                                                                                             \(=3.\left(3k^2+2k+2k\right)+4\)

\(\Rightarrow a^2+a=3.\left(3k^2+2k+2k\right)+4+3k+2=3.\left(3k^2+2k+2k+k\right)+6\)

                                                              \(=3.\left(3k^2+5k\right)+3.2=3.\left(3k^2+5k+2\right)\) chia hết cho 3

Như vậy tích 2 số tự nhiên liên tiếp luôn chia hết cho 3 hoặc chia 3 dư 2.

Mà \(\left(-3\right)^{20}+1=3^{20}+1\) chia 3 dư 1

Vậy \(\left(-3\right)^{20}+1\) không phải tích 2 số tự nhiên liên tiếp.